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Abstract. We discuss the role of perceptron (or threshold) connectives
in the context of Description Logic, and in particular their possible use
as a bridge between statistical learning of models from data and logical
reasoning over knowledge bases. We prove that such connectives can
be added to the language of most forms of Description Logic without
increasing the complexity of the corresponding inference problem. We
show, with a practical example over the Gene Ontology, how even simple
instances of perceptron connectives are expressive enough to represent
learned, complex concepts derived from real use cases. This opens up the
possibility to import concepts learnt from data into existing ontologies.
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1 Introduction

Weighted Threshold Operators are n-ary logical operators which compute a
weighted sum of their arguments and verify whether it reaches a certain thresh-
old. These operators have been extensively studied in the context of circuit
complexity theory (see e.g. [22]), and they are also known in the neural network
community under the alternative name of perceptrons (see e.g. [4]).1

In [19], threshold operators were studied in the context of Knowledge Rep-
resentation, focusing in particular on Description Logics (DLs). We refer the
reader to [3] for a more thorough introduction to DL. Adding threshold opera-
tors to DL is not hard. In brief, if C1 . . . Cn are concept expressions, w1 . . . wn ∈
R are weights, and t ∈ R is a threshold, we can introduce a new concept
∇∇t(C1 : w1 . . . Cn : wn) to designate those individuals d such that

∑
{wi :

Ci applies to d} ≥ t. In the context of DL and concept representation, such

1 Under the modern understanding of the term, a ‘Perceptron’ may have an activation
function different from the Step Function (in particular, a differentiable one which is
more suited to learning via back-propagation in multi-layer networks). In this work,
however, we concentrate on the single-layer, step-function case.
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threshold (“Tooth”) expressions are natural and useful, as they provide a simple
way to describe the class of the individuals that satisfy “enough” of a certain set
of desiderata. For example, we may wish to state that a student must obtain at
least three credits from attending courses A, B, C and D, where courses A and
B are worth one credit each and courses C and D are worth two credits each.
This is naturally expressed by the TBox axiom

Student v ∇∇3(∃Att.A : 1,∃Att.B : 1,∃Att.C : 2,∃Att.D : 2)

where Att represents the “attends” role. Suppose now that course A became
compulsory. This could be done in two distinct ways: we could explicitly demand
that students attend course A, thus turning the above axiom into

Student v (∃Att.A) u∇∇3(∃Att.A : 1,∃Att.B : 1,∃Att.C : 2,∃Att.D : 2),

or we could simply assign more credits to course A and increase the credits
requirement, thus turning the above axiom to e.g.

Student v ∇∇12(∃Att.A : 10,∃Att.B : 1,∃Att.C : 2,∃Att.D : 2).

These last two possibilities are semantically equivalent: in either scenario, a stu-
dent has to attend course A and at least two of the others. However, they convey
subtly different situations, and would lead to different consequences should the
ontology be modified further (e.g. by adding another course E that is worth 10
credits by itself).

For a less mundane example, consider the Felony Score Sheet used in the
State of Florida2, in which various aspects of a crime are assigned points, and
a threshold must be reached to decide compulsory imprisonment. For example,
possession of cocaine corresponds to 16 points if it is the primary offense and to
2.4 points otherwise, a victim injury describable as “moderate” corresponds to
18 points, and a failure to appear for a criminal proceeding results in 4 points.
Imprisonment is compulsory if the total is greater than 44 points and not com-
pulsory otherwise. A knowledge base describing the laws of Florida would need
to represent this score sheet as part of its definition of its CompulsoryImpris-
onment concept, for instance as

∇∇44(CocainePrimary : 16,ModerateInjuries : 18, . . .).

While it would be possible to also describe it (or any other Boolean function)
in terms of more ordinary logical connectives (e.g. by a DNF expression), a
definition in terms of Tooth expressions is far simpler and more readable. As
such, the definition is more transparent and more explainable.

We refer the interested reader to [19] and to [13] for a more in-depth analysis
of the properties of this operator. The paper [13] also introduces a knowledge-
dependent variant of the threshold operator, in which the individuals are not

2 http://www.dc.state.fl.us/pub/scoresheet/cpc manual.pdf (accessed: 20 May 2020)

http://www.dc.state.fl.us/pub/scoresheet/cpc_manual.pdf
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scored with respect to the current interpretation but with respect to some knowl-
edge base K (which, in the case of a felony score sheet, may describe for example
the findings according to which the score is to be computed). Having Tooth
expressions in a language of knowledge representation has notable advantages,
from a cognitive point of view and from the practical point of view of knowl-
edge acquisition. First, in psychology and cognitive science, the combination of
two or more concepts has a more subtle semantics than set theoretic operations.
As shown in [20], Tooth operators can be used to represent these new concepts
more faithfully regarding the way in which humans think of them and combine
them. Second, as illustrated in [13], since a Tooth expression is simply a linear
classification model, it is possible to use standard linear classification algorithms
(such as the Perceptron Algorithm, Logistic Regression, or Linear SVM) to learn
its weights and its threshold given a set of assertions about individuals (that is,
given an ABox).

Extensions of Description Logic involving threshold operators have also been
discussed in [1] and [2]. The approaches presented in these two papers are, how-
ever, very different from the one summarized above: the former paper, indeed,
changes the semantics of Description Logic by associating graded membership
functions to models and requiring them for the interpretation of expressions,
while the latter one extends the semantics of the Description Logic ALC by
means of weighted alternating parity tree automata. The approach described
above is, in comparison, more direct: no changes are made to the definitions of
the models of the Description Logic(s) to which threshold operators are added,
and the language is merely extended by means of the above-described opera-
tors, which as already pointed out in [19], can be easily seen not to increase the
expressive power of any language that contains the ordinary Boolean operators.

Aside from these technical differences, we argue that the approach introduced
in [19] is more adequate even from a cognitive point of view. Although the pro-
posal of Baader et al. allows one to represent concepts in an approximate way,
introducing weights in the language permits to represent in a more straightfor-
ward way the relative importances of the different features participating in the
concept descriptions. Tooth operators are in fact in line with the classical def-
inition of prototypes given in the Prototype Theory exploited in the cognitive
sciences (see e.g. [17, chapter 3]). Moreover, threshold expressions of [19] are
putatively more intuitive and readable for non logic-experts, making them more
cognitively adequate and less error-prone.

Two questions, however, need to be answered in order to assess the viability
of this proposed addition to the language(s) of Description Logic:

1. Given a Description Logic L, let L(∇∇) be the logic obtained by adding
threshold operators to it. How does the inference problem for L(∇∇) compare
to that for L? More specifically: let K be a L(∇∇)-knowledge base and let φ
be a L(∇∇) axiom. Can we reduce the problem of whether K |= φ (that is, of
whether every interpretation that satisfies K satisfies φ) to the problem of
whether K0 |= φ0 for some K0, φ0 ∈ L with an at-most-polynomial overhead?
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2. Can we find examples in which simple threshold expressions can be used
to express, more shortly and readably than (but roughly as accurately as)
alternative approaches, non-trivial concepts derived from real data? If so,
this would validate the claim that such expressions are well-suited for rep-
resenting complex concepts in a readable way [19,20].

In what follows, we will answer these two questions.

2 Translating Threshold Expressions

The key ingredient for our result will be the following Proposition:

Proposition 1. Let T = ∇∇t(C1 : w1 . . . Cn : wn) be any L(∇∇) threshold ex-
pression, where C1 . . . Cn are L-concepts and t, w1 . . . wn are positive integers.
Furthermore, let TOOTH be an atomic concept symbol not appearing in T.

Then we can build a knowledge base K(T 7→ TOOTH) in L, containing expres-
sions built out of the concepts expressions C1 . . . Cn and of a number of fresh
atomic symbols (including TOOTH) such that

1. K(T 7→ TOOTH) |= TOOTH ≡ T;
2. Every interpretation I whose signature contains the atoms contained in T

but not the fresh atoms introduced by K(T 7→ TOOTH) can be expanded in one
and only one way into some I ′ that satisfies K(T 7→ TOOTH);

3. The size of K(T 7→ TOOTH) is polynomial in the size of T.3

Before proving this, let us show that it leads to the intended conclusion. A
consequence of Proposition 1 is the following:

Proposition 2. Let C be any L(∇∇)-concept. Then we can find an L-theory KC ,
of size polynomial in the size of C and containing the symbols occurring in C as
well as a number of fresh atomic concept symbols, and a L concept expression
C ′ of size smaller or equal than that of C, such that

1. KC |= C ≡ C ′;
2. Every interpretation I whose signature contains the symbols of C but not the

fresh symbols added by KC can be expanded in one and only one way to an
interpretation I ′ that satisfies KC .

Then the desired theorem follows at once:

Theorem 1. Let L be a Description Logic that contains all Boolean connectives,
let K be a L(∇∇) knowledge base and let φ be a L(∇∇) axiom. Then, the problem
of whether K |= φ can be reduced, with polynomial overhead, to the problem of
whether KL |= φL for some L knowledge base KL and some L axiom φL.

3 For the purposes of this work, the size of a concept expression includes also the
number of bits required to express the weights and thresholds eventually occurring
in it.
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Thus, the inference problem in L(∇∇) can indeed be reduced efficiently to the
inference problem in L whenever Boolean connectives are already in the language
of L.

It remains to verify that Proposition 1 holds. So let ∇∇t(C1 : w1 . . . Cn : wn)
be our threshold expression, let k be the number of binary digits required to
write the threshold and the (positive) weights, and let us also assume the other
premises of Proposition 1. What we ultimately will do is writing the specification
of a ripple-carry adder4 and of a digital number comparator in the syntax of
Description Logic.

For the sake of clarity, we will do so in several steps:

2.1 Encoding the weights

Let Wij : i ∈ 1 . . . n, j ∈ 0 . . . k − 1 and Tj : j ∈ 0 . . . k − 1 be fresh atoms. Then
let K0 be the TBox containing

– Wij ≡ Ci, for all i ∈ 1 . . . n and for all j ∈ 0 . . . k− 1 such that the j-th least
significant digit of the binary representation of wi is 1, and Wij ≡ ⊥ for all
the others;

– Tj ≡ > for all j ∈ 0 . . . k − 1 such that the j-th least significant digit of the
binary representation of t is 1, and Tj ≡ ⊥ for the others.

Lemma 1. K0 has size polynomial in the size of our original threshold expres-
sion. Moreover, any interpretation I in which C1 . . . Cn can be interpreted and
in which the fresh atoms Wij and Tj do not appear has a unique extension to
an interpretation I ′ such that I ′ |= K0. For that interpretation, we furthermore
have that, for all individuals d ∈ ∆I′

,∑
{2j : j = 0 . . . k − 1, d ∈W I′

ij } =

{
wi if d ∈ CI

i ;
0 otherwise.

for all i ∈ 1 . . . n. Likewise,∑
{2j : j = 0 . . . k − 1, d ∈ T I′

j } = t.

2.2 Encoding the sum

Summing the first weight We define5 K1 as the union of K0 and the following
axioms, for the fresh atomic symbols SUM10 . . . SUM

1
k−1:

– For all j = 0 . . . k − 1, we add the axiom SUM1j ≡W1j .

4 Other, more efficient types of adder circuits are known and used in practice, and
could be translated along similar lines; but ripple-carry adders have the advantage
of simplicity and suffice for our purposes.

5 This first sum is strictly speaking unnecessary, but we keep it for clarity of exposition.
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Lemma 2. K1 has size polynomial in the size of our original threshold expres-
sion. Let I be as in Lemma 1: then I has exactly one expansion to a model I ′ of
K1, and for I ′ we have that

∑
{2j : j = 0 . . . k − 1, d ∈ (SUM1j )I

′} =
∑
{wi : 1 ≤

i ≤ 1, d ∈ CI
i }.

Summing the other weights For i = 2 . . . n, we define inductively Ki as Ki−1
plus the following axioms (for fresh symbols SUMi0 . . . SUM

i
k−1 and CARRYi0 . . . CARRY

i
k−1)

and OVERFLOWi:

– The axiom CARRYi0 ≡ ⊥;
– For all j = 0 . . . k − 1, the axiom

SUMij ≡(CARRYij u SUMi−1j uW i
j ) t (CARRYij u ¬SUMi−1j u ¬W i

j )t
(¬CARRYij u SUMi−1j u ¬W i

j ) t (¬CARRYij u ¬SUMi−1j uW i
j );

– For all j = 1 . . . k − 1, the axiom

CARRYij ≡(CARRYij−1 u SUMi−1j−1) t (CARRYij−1 uW i
j−1) t (SUMi−1j−1 uW

i
j−1);

– The axiom

OVERFLOWi ≡(CARRYik−1 u SUMi−1k−1) t (CARRYik−1 uW i
k−1) t (SUMi−1k−1 uW

i
k−1).

Lemma 3. For all ` = 1 . . . n, K` has size polynomial in the size of our original
threshold expression.

Moreover, for every such `, every interpretation I as in Lemma 1 can be
extended in exactly one way to an interpretation I ′ which satisfies K`; and for
this interpretation SUM`k−1 . . . SUM

`
0 is a binary encoding of the sum of the weights

(up to w`) which correspond to concepts that apply to the current individual, in
the sense that (for all d ∈ ∆I′

)
∑
{2j : j = 0 . . . k − 1, d ∈ (SUM`j)

I′} =
∑
{wi :

1 ≤ i ≤ `, d ∈ CI} whenever that value is less than 2k, and d ∈ (OVERFLOW`)I
′

otherwise.
In particular, if I |= Kn then

∑
{2j : j = 0 . . . k − 1, d ∈ (SUMnj )I

′} =
∑
{wi :

1 ≤ i ≤ n, d ∈ CI} = vIT (d) is the value of our tooth expression T = ∇∇t(C1 :
w1 . . . Cn : wn) if that value is less than 2k, and otherwise d ∈ (OVERFLOWi)I

′
for

at least one i = 2 . . . n.

2.3 Comparing with the threshold

Now define K as Kn plus the following axioms (for fresh atoms EQk−1 . . . EQ0,
MAJk−1 . . . MAJ0, TOOTH:

– EQk−1 ≡ ((SUMnk−1 u Tk−1) t (¬SUMnk−1 u ¬Tk−1));
– For j = (k − 2) . . . 0, the axiom

EQj ≡ EQj+1 u ((SUMnj u Tj) t (¬SUMnj u ¬Tj));
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– MAJk−1 ≡ SUMnk−1 u ¬Tk−1;
– For j = (k − 2) . . . 0, the axiom

MAJj ≡ EQj+1 u SUMnj u ¬Tj ;

– The axiom

TOOTH ≡OVERFLOW2 t . . . t OVERFLOWnt
MAJk−1 t . . . t MAJ0 t EQ0.

Lemma 4. K has size polynomial in the size of our original threshold expres-
sion. Moreover, every interpretation I as in Lemma 1 can be extended in exactly
one way to an interpretation I ′ that satisfies K; and for this interpretation and
for every individual d ∈ ∆I′

,

– For all j = k − 1 . . . 0, d ∈ EQIj if and only if the binary encodings of vIT (d)
and of t agree from the most significant digit to the j-th least significant digit;

– For all j = k − 1 . . . 0, d ∈ MAJIj if and only if the binary encodings of vIT (d)

and of t disagree on the j-th least significant digit, which is greater for vIC (d)
than for t, but agree on all the digits on the left of it;

– d ∈ TOOTHI
′

if and only if we obtained an overflow when summing all the
weights which apply to the individual d (remember that we assumed positive
weights, so this implies at once that vIT (d) is greater than the threshold), or
if there is a digit that is greater for vIR (d) than for t and all the digits to the
left agree, or if all the digits of vIT (d) and of t are the same - that is, if and
only if vIT (d) ≥ t.

At this point, Proposition 1 follows at once by picking this K for K(T 7→ TOOTH).

3 Learning Simple Threshold Expressions

In order to evaluate the practical usefulness of threshold expressions, we are
going to investigate whether simple non-nested threshold expressions suffice to
represent adequately Gene Ontology concepts.

The Gene Ontology. The Gene Ontology [12] (GO) is a knowledge base consist-
ing (by January 2020) of 44,700 different concepts (“terms”) annotating more
than one million gene products from 4,591 different species. Different concepts
relate to each other not only via the usual subsumption (“is-a”) relation, but also
via other relations such as “part-of” or “regulates”; and they are partitioned into
the three disjoint sub-ontologies of Cellular Component, for concepts relating to
locations inside of a cell, like “nucleus” (term GO:0005634) or “Golgi Appara-
tus” (term GO:0005794); Biological Process, for concepts specifying “biological
programs” to which a gene product participates, like “Asexual Reproduction”
(term GO:0019954) or “Oxygen Transport” (term GO:0015671); and Molecu-
lar Function, for concepts relative to specific molecular-level roles performed by
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gene products such as “Enzyme Binding” (term GO:0019899) or “Structural
Constituent of Ribosome” (term GO:0003735).

Datasets exist that associate gene products to Gene Ontology terms: for
example, according to the Saccharomyces Genome Database [9,10],6 the enzyme
ATP synthase (ATP8) is located in the mitochondrion (GO:0005739), is involved
in the biological processes of ion transport (GO:0006811) and transmembrane
transport (GO:0055085), and more specifically ATPase activity (GO:0016887)
and hydrolase activity (GO:0016787) are among its molecular functions.

Approach. For the purposes of this work, we decided to focus on the annotations
of the Saccharomyces Genome Database and on the subset of the Gene Ontology
(the “GO slim”, in the terminology used by the Gene Ontology Consortium) that
has been curated by it for the purpose of annotating yeast gene products. We
likewise downloaded Gene Ontology annotations of yeast gene products from
the website of the Saccharomyces Genome Database. Then we considered the
following question: up to which degree is it possible to infer the Molecular Func-
tion annotations of a gene product from its Cellular Component and Biological
Process ones? In other words, given the locations of a gene product inside of a
yeast cell and the overall “cellular programs” it is involved in, can we infer (to
some degree, at least) its specific molecular-level roles?

It is worth emphasizing here that our purpose is not to design and pro-
pose a novel state-of-the-art machine learning algorithm. Rather, our aim is to
investigate the expressive potential of simple threshold expressions in real use
scenarios. To this purpose, we designed a very basic evolutionary algorithm to
extract threshold expressions from data. In brief, a population of one hundred
random threshold expressions (with Gene Ontology concepts as arguments, inte-
ger weights, at most 10 arguments, and threshold fixed at 100) is generated, then
they attempt to “copy” (concept, weight) pairs from randomly selected neigh-
bours7, keeping them if they improve the performance on the training data;
weights are mutated randomly, and the mutation is likewise kept if it is an im-
provement; and every ten turns the half worst-performing threshold expressions
are removed and replaced with random ones. After one thousand turns, we sim-
ply return the threshold expression that performs best over the training data.
This is only a cursory description, but again, we wish to make it clear that this
algorithm is merely a means to an end—the end being to verify whether sim-
ple threshold expressions can adequately capture complex concepts. No serious
attempt was made to fine-tune its performance or refine its overall design.

As a baseline, we used a few state-of-the-art learning algorithms as imple-
mented in the Waikato Environment for Knowledge Analysis (WEKA) [14],
namely a Random Forest classifier [7], the Sequential Minimal Optimization

6 The Saccharomyces Genome Database is available at https://www.yeastgenome.
org/.

7 While maintaining the maximum number of components of every threshold expres-
sion to 10: if that number has been reached, the copied weight replaces the component
whose weight has the smallest magnitude.

https://www.yeastgenome.org/
https://www.yeastgenome.org/
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algorithm for Support Vector Machines [18], a decision table majority classifier
[15], a logistic regression classifier [8] and a multilayer perceptron classifier [21].

Since the available data is heavily imbalanced (for every possible molecular
function, most gene products will not be associated with it), we decided to use
Matthews Correlation as our performance measure [16,6,11], which describes the
statistical correlation between the predicted label and the true one and is 0 if
these are uncorrelated and 1 if there is perfect positive correlation. As discussed,
e.g., in [11], other standard metrics for classification such as accuracy or the
F1 score can lead to overoptimistic results on greatly imbalanced datasets. The
Matthews Correlation Coefficient makes use of all four cells of the confusion
matrix (true/false, positives/negatives), and it assigns the same importance to
“positive” and “negative” examples. It has a natural statistical interpretation:
it can be seen as the special case of the Pearson Correlation Coefficient in which
variables may only take one of two values.

Data preparation. We prepared the data as follows: first, we removed all gene
product annotations listed as “dubious” in the Saccharomyces Genome Database,
as well as the annotations to the three uninformative top-level terms of the three
sub-ontologies. Then we picked from the mapping file of the Saccharomyces
Genome Database gene products with at least three annotations of type “Cellu-
lar Component” or “Biological Process”. Then we chose as the labels to predict
the “Molecular Function” type annotations that occur in at least one hundred
of the above gene products, and selected as features the “Cellular Component”
or “Biological Process” terms that apply to at least one of these gene products.
This resulted in a dataset of 4,595 gene products, each one of which has 120 fea-
tures and 17 possible labels. For each of these labels, we split the gene products
in five folds, maintaining the same proportions of true labels.

We reserved five of these labels for final testing, using the others for develop-
ing our approach to learning threshold expressions and for tuning our baselines.
This highlighted in particular that, in the cases of Decision Majority Tables,
Logistic Classifiers and Support Vector Machines, it was necessary to correct
the unbalancedness of the data by oversampling the positive examples during
training.

Evaluation. Finally, we tested our approach on the reserved labels and the cor-
responding datasets, training our method and our baselines—for each of the five
labels in the reserved dataset—on four folds and testing it on the remaining one.
The results are summarized in Table 1. The performance varies between labels
and for some of them it is not very high, which was only to be expected since
in general the biological processes to which a gene product participates and the
cellular components in which it is found are not adequate information to infer
their molecular function; but what is of interest for our purposes is that the per-
formance of threshold expressions (despite the very basic approach that we took
to their learning) follows roughly that of our baselines and is overall as good as
them. This supports our hypothesis that threshold expressions, and very simple
ones at that, can adequately capture complex concepts in real world scenarios
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RF SVM DT LR MLP ∇∇

GO:0016787 .34 (.02) .30 (.03) .22 (.03) .30 (.03) .26 (.07) .22 (.06)
GO:0016301 .67 (.07) .53 (.06) .51 (.09) .66 (.06) .79 (.03) .75 (.04)
GO:0030234 .25 (.06) .18 (.01) .12 (.03) .20 (.04) .22 (.07) .27 (.06)
GO:0022857 .80 (.02) .71 (.04) .55 (.02) .79 (.02) .75 (.03) .72 (.05)
GO:0016740 .50 (.01) .48 (.03) .47 (.04) .45 (.04) .48 (.02) .47 (.03)

Table 1. Matthews Correlations of predictions on five Molecular Function terms. We
report averages between five folds and standard deviation. (Leading zeros are omitted.)
RF = Random Forest, SVM = Support Vector Machine, DT = Decision Table, LR =
Logistic Regression, MLP = Multilayer Perceptron, ∇∇ = our Threshold Expressions.
The five rows correspond to the Molecular Function Gene Ontology terms GO:0016787
(hydrolase activity), GO:0016301 (kinase activity), GO:0030234 (enzyme regulator ac-
tivity), GO:0022857 (transmembrane transporter activity) and GO:0016740 (trans-
ferase activity).

as well as more sophisticated models despite being of simpler understanding and
(as we saw) easier to integrate with logical reasoning.

4 Conclusions

The results of this work lend support to the feasibility of adding threshold con-
nectives to knowledge representation languages. As showed in Section 2, such
connectives can be added to the language of any DL that has all Boolean connec-
tives without increasing the complexity of the corresponding inference problem,
and thus reasoning services for any such DL L can be also used (after translation)
also for the corresponding extension L(∇∇).

Furthermore, as we showed in Section 3 with a practical example over the
Gene Ontology, even simple instances of perceptron connectives are expressive
enough to represent complex notions in real use cases.

Much more can be done. A particularly intriguing aspect is the experimental
evaluation of the degree up to which threshold expressions are more human-
interpretable than equivalent logical formulations, along the lines of [5]. Also,
with the prospect of sharing ontologies with perceptron connectives, their addi-
tion to semantic web languages will need to be carefully pursued.
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