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Abstract. Time-lapse microscopy is a primary experimental tool for biologists 
to study development: the dynamic process by which an entire organism forms 
from an individual cell. The domain of these cellular dynamics is quite complex, 
and thus, demands a conceptual and computational architecture to support the 
integration of knowledge obtained across experiments and theories. In previous 
work, we have addressed the conceptual level and developed an axiomatic theory 
of cellular genealogies. In this work, we will address the other fundamental part 
of theory formation: the experimental level, where we have to deal with actual 
observations and discoveries. In the case of experiments from time-lapse micros-
copy, we need to go from the individual images taken at discrete time points to a 
full conceptual description of the underlying continuous cellular processes. In 
this work, we take a first step to bridge the general theory T(CO) and the experi-
mental level by investigating individual cases. Any time-lapse experiment is 
linked to a real spatiotemporal genealogy, and we assume that these entities are 
particular instances of the general theory. We will investigate how this individual 
experimental information can be organised and represented. 

Keywords: Knowledge management, Ontology of biological reality, Theories 
of Developmental Biology, Microscopy, Time-lapse imaging, Cell tracking. 

1 Introduction 

Cellular dynamics and interactions shape multicellular life as it develops from a single 
fertilised egg into a complex organism. These (inter-)cellular processes also maintain 
the structure and function of the organism during its lifetime. To fully understand the 
principles underlying this self-organising process, we have to be able to observe and 
analyse the cellular dynamics and cellular states from experiments [1]. One milestone 
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of time-lapse experiments has undoubtedly been the reconstruction of the embryonic 
lineage tree of the nematode Caenorhabditis elegans [2]. From these roots, modern 
fluorescence microscopy has turned into a powerful tool to resolve the dynamics of 
thousands of cells together with readouts of cellular states by fluorescent labels [1, 3] 
across a wide range of biological questions from developmental biology to stem cell 
biology and oncology. But imaging and visualizing cellular dynamics is only one part 
of the problem, we also have to extract and quantify the resulting cellular dynamics. 
Beyond simple experiments with only a few cells, manual analysis of cell tracking ex-
periments is mostly infeasible. Consequently, a variety of methods have been devel-
oped to computationally track individual cells in time-lapse movies [4, 5]. Beyond com-
putational tracking of cells there waits another challenge, however: How can we for-
malise and extract knowledge from the automated (or manual) tracking results? Here, 
we need to develop and refine concepts and theories to make sense of the patterns we 
observe [6]. The first step is to establish standard data formats that serve as the core to 
annotate and share the tracking results [7]. We should base these annotations on a solid 
theoretical foundation and carefully develop the underlying terminology and formal 
concepts themselves as theories about the biological world [8]. We have recently [9] 
made a first step into this direction and developed the essential parts of a conceptual 
architecture that supports integration and interoperability of cell tracking experiments. 
This framework is based on the Cellular Genealogy as a fundamental notion for the 
development of a Cell Tracking Ontology. Some core components and patterns of 
which have already been presented in [10, 11]. In this work, we will now explore the 
experimental level of theory formation, where we have to deal with actual observations. 
Both aspects need to be addressed when developing an empirical theory about an area 
of reality. In the case of time-lapse experiments, we need to go from individual images 
taken at discrete time points by a microscope to a full, conceptual description of the 
underlying continuous cellular processes. Here, we take a step to bridge the general 
theory T(CO) and the experimental level by investigating individual cases. We will 
examine how different experimental information can be organised and represented. 

2 Towards a formal theory of cellular genealogies 

Developmental biology is the science that investigates how a variety of interacting pro-
cesses (at the molecular, cellular and tissue level) generate the various shapes, size, and 
structural features that arise throughout the life cycles of multicellular organisms. This 
field also encompasses the biology of regeneration, metamorphosis, and the growth and 
the differentiation of stem cells in the adult organism and is thus intimately linked with 
stem cell biology and basic research in regenerative medicine and oncology.  
We would like to note one fundamental problem here: there is no clear consensus on 
how to define the boundary between the animate and inanimate. Typical defining prop-
erties of life are, among others, metabolism, adaptivity and interaction with the envi-
ronment, self-organisation, reproduction, heredity, and growth. These conditions define 
a system which must satisfy at least the following basic properties. It should have a 
boundary, demarcating the system from the environment, and it should have inner parts. 
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It should further be able to sense and interact with the environment1. In biology, the cell 
is the simplest system satisfying these assumptions. Thus, in our view, the self-organ-
ised development of a cellular genealogy, starting from a zygote, seems to be an essen-
tial feature of the animate. 
Hence, the ontology of biology should consider the existence of cellular genealogies as 
one of the essential features demarcating biology from other fields of natural science, 
as physics or chemistry. The cellular genealogy of an animal is determined by the whole 
developmental process of this animal from the initial zygote to the multicellular organ-
ism that is focused on the cell level. At any time-point of an animal’s life, a collection 
of cells are present. During development, these cell collectives permanently change, by 
e.g. cell division, cell differentiation and cell death. Hence, a cellular genealogy is a 
process which is determined by the development of an animal’s cell collectives. Cellu-
lar genealogies possess a certain structure which can be specified by using the notion 
of a cell collective and cell situation, and the process connecting them. There are vari-
ous important structural parameters of a cellular genealogy. How many cells exist in a 
complete genealogy of an animal? What can be said about the sequence of the maximal 
time-intervals during which there is no change of the corresponding cell-collectives? 
As a next step, these cell collectives can be extended by adding relations, such as the 
morphology of the single cells, or cell groups, or their localisation in space. Cell col-
lectives extended by additional relations are called cell situations. Since cells may di-
vide and eventually die the number of cells within a region under consideration (e.g. a 
developing organism) changes through time. Let us consider a time-segment (time-in-
terval) I, such that during I no cell-division and no cell death occurs. Then, the cells 
existing during I form a collective Cells(I) that can be considered as a continuant 
through I.  
In [9], we introduced the notion of Cell-Collective-Genealogy (denoted by CollGen), 
and Cell-Situation-Genealogy (SitGen). The lifetime of an organism is assumed to be 
a closed time interval. We assume that the time is presented by time-points and time-
intervals, whereas the time-points have the order-type of the real numbers. Let us con-
sider a time-segment (time-interval) I such that during I no cell-division and no cell 
death occurs; then we call the set of cells associated with this interval a cell collective. 
During times when the number of cells changes, new cells may occur, and cells may 
disappear (i.e. die). We consider the life of an organism Org from fertilisation to death. 
Org starts as a single cell, the zygote, develops into a multicellular structure through 
time collectives of cells, lives in a dynamic equilibrium and finally dies, i.e. the dy-
namic, functional structures dissolve. We divide the lifetime T of Org into a sequence 
of non-overlapping time-intervals I(1), ... I(n) such that the following conditions are 
satisfied: 

 
(1) The intervals I(m) have a first point (they are left-closed), but no last point 

(right open). More precisely, they have the form [a(m), a(m+1)) specifying the 

 
1  Cf. Autopoiesis as an attempt to define living matter using concepts from general systems 

theory such as self-organisation. 
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set {c : a(m) ≤  c  < a(m+1)}, where 0 ≤ m  ≤ n. Further,  LifeT(Org) = ⋃{ 
I(m) :  0 ≤ m  ≤ n}. 

(2) Let Cells(I(k)) be the set of cells existing during I(k), then no cell death or 
division occurs during the interval I(k), k≺ n. Further, we assume that 
Cells(I(k)) ≠ Cells (I(k+1)). 

 
These conditions imply further properties: From Cells(I(k)) to Cells(I(k+1)) the number 
of existing cells changes. We consider two types: cell division and cell death. If a divi-
sion of a cell c ∈ I(k) occurs then this process ends up with two daughter cells starting 
their existence at the left boundary of the interval I(k+1). Analogously, if a cell under-
goes cell death during I(k) then this ends at the left-boundary of I(k+1). The final defi-
nition of CollGen(start) then must specify which cells from Cells(k) are related to which 
cells in Cells(k+1). To this end, we introduce two relations: div(x,y,z): a cell x of 
Cells(k) undergoes a cell division during I(k) resulting in two daughter cells y and z 
starting their existence at the left-boundary of I(k+1). We also introduce the relation 
id(x,y) stating that x belongs to Cells(k) and y belongs to Cells(k+1) and both cells are 
identical. We further say that a cell x in Cells(k) has a successor cell y in Cells(k+1), if 
y is either a daughter cell of z or if y is identical with x, denoted by succ(x,y). The cell 
collective genealogy CellGen(c(0)), is then specified by the following system 
CollGen(c(0)) = ({Cells(k) | 0 ≤ k ≤  n}, div(x,y,z), id(x,y)). We call the intervals I(k) 
invariance intervals because during these intervals no cell-change occurs. The structure 
of such a cell-collective genealogy is an important, uniquely determined feature of the 
organism. The following theorem we postulate without proof.2 
 
Theorem. For any organism Org there exists a uniquely determined cell-collective 
                 genealogy associated with Org.  
 
As outlined, for every cell collective x there is a uniquely determined time-interval I 
such that no changes occur during I. This time-interval is called the invariance interval 
of the cell-collective; it has a left-boundary and no right-boundary. 
A cell situation genealogy is an extension of the cell collection genealogy: We start 
with the system CollGen(c(0)) and extend any collective of cells(k) into an object-sit-
uation Sit(k). Sit(k) contains exactly the cells of Cells(k) as objects, and it is embedded 
into an object-situation with the timeframe I(k) and a specified spaceframe. The collec-
tive Cells(k) then spans a certain space, which contains at least the spatial convex clo-
sure of the objects in Cells(k). We must specify the situation type determined by a sig-
nature Σ. A situation-genealogy is based on signature-extension of a cell collective ge-
nealogy, i.e., to the signature Σ(0) further symbols from a signature Σ(1)  are added; we 
assume that Σ (0) ∩  Σ(1) = ⌀. For every signature Σ(1) we may introduce a model-
structure that models the corresponding cell-situation genealogy, called SitGen = 
(CollGen, int(Σ(1)).  

 
2 Because of limitation of space for the current paper, the proof is presented [9].  
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Based on the signature Σ(0) we created an initial theory about cell-collective genealo-
gies, denoted by T(0)(CG), and presented in [9]. The further development and refine-
ment of this theory is a future research field of its own. Here, we would like to concen-
trate on the experimental level of theory formation. 

3 The experimental framework 

Humans access the independent reality by various components and levels of their cog-
nitive systems. The immediate interaction between the subject and reality, subject and 
object, is realised through the senses by the process of perception. These sense-data are 
organised, clustered, and then concepts and relations between the data are formed. We 
call this basic information, acquired by the subject, phenomena, and data. A theory 
about a domain should formulate certain conditions that explain the domain’s phenom-
ena. The higher levels of cognition use principles of causation to establish a theory 
about a part of reality.  
A theory T consists of propositions which are postulated to be true in D. An experiment 
is a mediator between a theory and the real domain under consideration. We want to 
get data about the CG which are not captured by the given theory T(CG). What can be 
said about the types of the involved cells, and about the structure of the cellular gene-
alogies of concrete species? The Gene Ontology (GO) provides many features about 
the cells which are not yet considered in the current theory TG. However, all this infor-
mation is needed to extend the initial theory T(CG)(0) so we can get a complete picture 
of the behavioural dynamics of cells. Time-lapse experiments are one important source 
of such information.  
These real-world genealogies are analysed by cell tracking experiments. Such experi-
ments yield snapshots by a microscope M of a continuously developing cell situation 
genealogy SitGen. Related to SitGen the microscope M generates a finite sequence of 
images that correspond to presentic situations, determined by SitGen. These images are 
called frames, and the resulting finite ordered set of frames is called the frame sequence 
of the experiment. An experiment of this type establishes a relation between SitGen, 
the microscope M, and the frame sequence FSeq, denoted by Exp(SitGen, M, FSeq), 
whereas M serves as a mediator3 between the original entity SitGen and the output FSeq 
in the form of a finite sequence of images. The frame-sequence provides important in-
formation about the evolving cell situation genealogy. The snapshot of a situation is an 
independent ontological entity, which is classified in the framework of GFO as a mate-
rial presentic object, or simply as a material presential. With this assumed precondi-
tions, a formal description of the relation Exp(SitGen,FSeq) is useful, because it pro-
vides a deeper understanding of the relation between the reality of SitGen and the data, 
generated by M, and provides a frame sequence FSeq, briefly denoted by FSeq(SitGen). 
The interaction between cellular genealogies and frame sequences are described by ax-
ioms. Here, we only sketch the basic ideas; further details are presented in [9].  

 
3 The development of such mediators (imaging techniques) play an important role in the advance-

ment of science and its applications in general. A significant example is magnetic resonance 
imaging (MRI).  
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FSeq(x) ≔ x is a frame-sequence, and its components are called frames. Every frame 
is a snapshot of a situation, denoted by PSit. We introduce a linear ordering between 
the components of a frame-sequence, hence such a sequence can be presented by the 
structure FSeq = ({F(1), …, F(n)}, <), where F(1) < … < F(n). Let FSeq be a frame 
sequence, we say that a component G is a successor of the component F, if F < G and 
there is no frame between F and G; we say that G is subsequent to F.  
We assume that in any frame there occur cells, that these cells are presentials, and any 
such presentic cell is a snapshot of a uniquely determined cell (with lifetime> 0). We 
introduce relations such as assoc(F,t): „the frame F is associated with the time point t” 
(F is a snapshot at time-point t) and component(x,y): x is a component of the frame y, 
distance(a,b,r): the presentic cell a and the presentic cell b have distance r.  
For every frame sequence FSeq there exists a cell collective genealogy CollGen such 
that any component of FSeq is a snapshot of a cell collective in CollGen.   

4 From Frames to the Representation of Cellular Genealogies 

The data acquired by the experiment are taken from snapshots which are presented in 
the frame sequences. Hence, we use the frame-sequence and some basic knowledge 
about the sequences’ structure. For the tracking of single cells (as individual instances) 
we must introduce constants c(1),..., c(n),   denoting these (presentic) cells. These con-
stants are associated with the different frames, F(1),…, F(n) being snapshots at certain 
time-points, say t(1),...,t(n). Since we are not sure, whether a cell a in frame F(i) is the 
same as the cell b in F(i+1) (the same for daughter cells and divisions etc.,), we are 
forced - in the first step – to consider the presentic cells for any frame separately. For 
this purpose, we may associate to any constant c a timestamp, say expressed by c@t 
(the presentic cell occurs in the frame F(t)). For the construction of a representation of 
the genealogy, we need to know whether some of the following conditions hold: id(a@i, 
b@(i+1)), or div(a@i, b@(i+1), c@(i+1)), Death(c@i) (and other relations according 
to the situation). To answer these questions background knowledge using existing on-
tologies, the concepts of which can be applied to annotate the frames and their parts. 
Another important method could be machine learning, and – of course – other methods 
of artificial intelligence. Symbolic artificial intelligence can be used to abstract tem-
poral patterns from temporalised data (i.e. data of the form c@t).  
    We further distinguish atomic from complex data.  Atomic data have the form of 
atomic sentences, for example, id(a@i, b@(i+1)) (with the meaning: a@i and b@(i+1) 
are snapshots of a cell c). Complex data are particular combinations of atomic data, for 
example we may consider id(a@i, b@(i+1)) /and id(b@(i+1), c@(i+2)) which says that 
the cells a@i, b@(i+1), c@(i+2) are equivalent, hence present the same cell. 
Individual data can be annotated by additional information, taken from existing bio-
ontologies. For example, the complex datum [id(a@i, b@(i+1)) and id(b@(i+1), 
c@(i+2))] can be annotated by a cell-type T. 
    Let us consider a frame F(i) = (PSit, c(1),...,c(m), r(1),...r(n)), and F(i+1) a successor 
frame of the sequence. F(i), F(i+1) reflect snapshots of certain situations S, S’ of the 
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genealogy. Are F(i) and F(i+1) snapshots of the same situations, or from different situ-
ations? One may either assume that both are from the same situation, or that F(i) and 
F(i+1) are taken from succeeding situations: 

 
(1) F(i) and F(i+1) are from the same situation Si(k), i.e. no cell division or cell 

death occurs, and the cells in F(i) and F(i+1) are snapshots of the same cell. 
We then need to know for which c’ in F(i) and c’’ in F(i+1) there is a cell c in 
Sit (being an object), such that c’ and c’’ are snapshots of the same cell c. 
Furthermore, a cell division might occur during Sit. We need to know whether 
a certain cell in F(i) and F(i+1), identified as the same cell, is in the process of 
cell division, as might be deduced from the shape of the cell (e.g. its nuclear 
structures) or by some additional signal such as fluorescent markers of specific 
proteins [12]. The process of identifying cells across snapshots is called cell 
tracking and typically uses either engineered features or Machine Learning to 
establish a set of rules when the identified c’ and c’’ are “similar enough” to 
be considered snapshots of the same cell [4, 13, 14].  

(2) F(i) is from situation Sit(j) and F(i+1) is from situation Sit(j), hence S(j+1) is 
the successor situation of S(j). In this case, there is a change of cells from S(j) 
to S(j+1). Then, we need to know how the cells in F(i) relate to the cells in 
F(i+1): Which cells in F(i) have no successor in F(i+1)? Which cells c in F(i) 
give rise to daughter cells c’, c’’ in F(i+1)? Which cells c’ in F(i) and c’’ in 
F(i+1) are snapshots of the same cell? 

 
As mentioned above, we assume those assignments between observed cells in F(i) and 
F(i+1) have been estimated either using computational or manual cell tracking. The 
information from (1) and (2) can then be used to construct a formal representation out 
of the experiment.  In constructing a representation of an individual genealogy, we must 
introduce constants in the language; every cell that we detect in a frame is denoted by 
a constant. The number of constants may change as new cells may occur (after cell 
division). When using FOL as a representation language, we thus add atomic sentences 
to the specification. For example, if c’ and c’’ are constants and we know that c’ and 
c’’ are daughter cells of c, we add to following sentences to the representation: daugh-
ter(c, c’), daughter(c, c’’), div(a, b, c) etc. Analogously, we may add id(c, d), or (not 
exists x such that successor(c, x)), or Dead(c). We can also represent this information 
about the constants as a knowledge graph using a graph-theoretical representation. We 
summarise some of the representational formalisms using an example. FOL is the most 
expressive formalism. We distinguish (in a generalisation of similar notions of DL (de-
scription logic)), the FO-TBox, FO-Abox, and FO-extABox. An FO-Tbox  (first-order 
TBox) contains those formulas with variables and quantifiers. FO-Abox (first-order 
ABox) contains only atomic sentences (i.e. no variables, no quantifiers), FO-extABox 
(extended first-order ABox) contains variable-free propositions composed of atomic 
sentences/propositions and propositional connectives. Let us consider a specific exam-
ple to demonstrate FO-TBox, FO-Abox, and FO-extABox: T = {∀x∀y∀z (div(x,y,z) →  
daughter(y,x) ∧ daughter (z,x) ∧ y ≠ z)}  belongs to FO-TBox. 
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The atomic sentences {div(a,b,c), daughter(b,a), daughter(c,a)} belong to FO-ABox. 
The FO-ABox must be consistent with the FO-TBox. Hence, the FO-ABox must not 
contain the atomic sentence b = c. The FO-extABox could also contain sentences like 
c ≠ b. These propositions can then be formalised within DL, OWL using FOL/CL. As 
a result of the analysis of the frame-sequences, we get a set of atomic sentences. Our 
strategy is to develop a system FO-TBox and FO-ABox and transform this representa-
tion into DL and OWL.  
We ultimately want to provide a solution that enables interoperability among cell track-
ing experiments. There is not yet a widely-accepted standard for storing, annotating and 
exchanging cell tracking results and the tools used in the domain usually come with 
their own ad hoc formats. However important first attempts have been made to define 
a standard data format [7]. Furthermore, there are already several ontologies available 
and organised within the Open Biological and Biomedical Ontology (OBO) Foundry 
[15]. Among those there are many ontologies that are relevant to cell tracking experi-
ments. We are particularly interested in ontologies that describe (1) experiments, such 
as the Ontology for Biomedical Investigations (OBI) [16], (2) cells, e.g. the Cell On-
tology [17] or (3) cell characteristics and behaviours, such as the Phenotype and Trait 
Ontology [18] or the Cell Behavior Ontology (CBO) [19]. Therefore, a straightforward 
approach (illustrated in Fig.1) is the annotation of raw data using one or several of these 
relevant ontologies. Raw data usually contains only presentic information obtained 
from FSeq(x) such as frames, presential cells and presential situations and therefore the 
proposed solution serves well for querying raw data on presentic entities, e.g. return all 
frames containing cells of a given type or shape. However, the existing frameworks 
would not support more advanced queries which go beyond presentic entities, e.g. one 
cannot query for cellular genealogies in which all cells of a certain sub-lineage died, or 
for a subpopulation of stem cells which gave rise to a certain pattern of differentiated 
cells. This is the consequence of the missing formalisation in the basic data structures 
that are typically used. Our work aims to close this gap. Therefore, on top of the solution 
presented so far, we also need to facilitate cross-experiment and cross-systems queries 
as well as data exploration that is not limited to presentic entities. In Figure 1, we pro-
pose an architecture built on the core formalism of cellular genealogies. It consists of n 
cell tracking systems, each supporting their own format for representing the results of 
the experiments. The raw data from each system is then translated into the OWL-Abox 
by means of the Cell Tracking Annotation (CTA) Tool, e.g. [20]. The CTA will provide 
interfaces for specific raw data formats and will support the automatic translation of 
raw data into an interoperable format based on OWL-TBox of the Cell Tracking On-
tology (CTO). That way, the information about the presentic entities detected in the 
images, such as presentic cells, their characteristics or presentic cell collections can be 
correctly represented in the ontology. Next, the CTA automatically augments the pre-
sentic information by means of frame-sequences axioms. Basing on an OWL-ABox 
containing information on presentic entities and their sequences, CTA allows recon-
struction of (1) time extended entities such as cells (objects) together with their charac-
teristics, as well as (2) intercellular processes, such as cell divisions and finally, (3) 
complex structures such as cellular genealogies. Similarly, these reconstructed entities 
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can themselves be further annotated with the help of the biomedical ontologies inte-
grated into CTO. The whole knowledge graph extracted from the reconstructed entities 
is then added to the original OWL-ABox, which then can be used as a source for cross-
system services such as, e.g. cross-system querying. 
 

 
Fig. 1. (1) presents a straightforward architecture for introducing interoperability in cell tracking 
domain by annotation with existing bio-ontologies. (2) depicts the architecture based on the Cell 
Tracking Ontology and the Cell Tracking Annotation Tool which supports the transformation of 
raw data into CTO ABox which increases the possibilities of information retrieval on cellular 
genealogies.  

5 Conclusions 

As a continuation of the work presented in [9], we present here a generic framework 
for specifying a basic relation between empirical theories and the corresponding exper-
iments as mediators between the theory and the world of individual entities. An essen-
tial component is the symbolic presentation of the data, acquired by experiments from 
real-world entities. We applied this framework to the domain D(CG) of cellular gene-
alogies. The symbolic reconstruction and representation of cellular genealogies from 
data, acquired by experiments, uses techniques of information technology, including 
various forms of data representation as formal logics, description logics, and imple-
mented languages like OWL. We argue that such a broad framework is needed as it 
provides the components and modules to achieve the overall aim that can be summa-
rised by the following conditions: 

1. Extraction and interpretation of biological data from systems-level experiments, and 
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support of the interoperability between and across different types of observations at 
the single-cell level (e.g. time-lapse microscopy and single-cell sequencing).  

2. Integration of data and knowledge that should lead to new forms of organisation of 
biological knowledge. 

3. Supporting and augmenting the scientific progress by the use of techniques of ma-
chine learning and symbolic artificial intelligence. 

We hope that our approach and framework paves the way for further research topics in 
these directions.   
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