
Comp-O: an OWL-S Extension for Composite
Service Description

Gregory Alary, Nathalie Hernandez[0000−0003−3845−3243], Jean-Paul
Arcangeli[0000−0002−0521−9082], Sylvie Trouilhet[0000−0003−4330−5034],

Jean-Michel Bruel[0000−0002−3653−0148]

Institut de Recherche en Informatique de Toulouse, University of Toulouse, France
{firstname.lastname}@irit.fr

Abstract Component-based software engineering is a paradigm that fosters
software flexibility and emphasizes composability and reuse of software compo-
nents. These are runtime units that provide services and, in turn, may require
other services to operate. Assembling components consists in binding compo-
nents’ required services to provided ones to deliver composite services with added
value. Building a composite service is a challenging task as it requires identifying
components and services that are compatible, binding them to implement the
service, and describe it for discovery. For that, the vocabulary used to describe
component-based services (i.e., services offered by components or assemblies)
must support the description of required services, and descriptions must be
combinable in order to automatically generate composite service descriptions.
However, existing solutions are limited to the description and composition of
provided (and not required) services. In this paper, we consider ontologies to de-
scribe component-based services implemented by component assemblies. After
comparing existing service ontologies, we present an extension of OWL-S called
Comp-O. Through a proof-of-concept, we demonstrate how the added semantics
can be handled to automatically build composite service descriptions.

1 Introduction

Component-based software engineering consists in designing software as assem-
blies of reusable and versatile software components. Software components are
building blocks that implement and provide services. As they exhibit the ser-
vices they require at the same level as the services they provide, components
are easily composable [1]. In order to make a component fully operational, i.e.,
actually provide its services, each of its required services must be bound to a
service that is provided by another component. Composing components, that is
to say building assemblies of components, means binding services based on their
abstract specifications (e.g., signatures, pre- and post-conditions). Composition
leads to complex composite services with added value whose behavior depends
on the components that are involved in the assembly.

To improve discoverability by third parties, component-based services(CBSs)
must be semantically described. When they result from composition, their se-
mantics depend on the ones of the components. The semantics of the services

2 Authors Suppressed Due to Excessive Length

provided by a component depends on the semantics of the services required by
this component. Since these required services are abstracted, the actual seman-
tics depend on the semantics of the provided services they are bound to. In a
way, the semantics of a composite service is distributed among the components.

The problem is to describe the services provided by components that have
required services, both to enable assistance to the service developer when she/he
assembles components and to combine such descriptions to automatically gener-
ate composite service descriptions. We propose to describe CBSs with ontologies
in order to leverage the semantics of such knowledge representations regarding
two issues : (i) support a detailed description of composite services; (ii) support
the composition of services and produce a description of a composite service
depending on the components participating to the assembly.

Considering ontologies in the description of services improves their discover-
ability [2] and their composition [2][3]. Several ontologies and approaches exploit-
ing them have thus been proposed. However, existing solutions mainly consider
Web services and are not suited for CBSs requiring specific services.

In this paper we propose Comp-O, an extension of the well-known OWL-S
ontology in order to consider specific characteristics of CBSs and we demonstrate
how the added semantics can be handled to automatically build composite ser-
vice descriptions. The paper is organized as follows. Section 2 briefly introduces
software components, component-based development, and CBSs, then the char-
acteristics of CBSs are exposed. In Section 3, the requirements for a component-
based service ontology are presented and tested against several existing ontolo-
gies. Comp-O, an extension of OWL-S complying with the requirements, is then
presented and instantiated in Section 4. Section 5 proposes an approach to as-
sist the developer in the building of Comp-O composite services and to generate
their descriptions automatically. Last, Section 6 summarizes the contribution
and discusses some future works.

2 Component-based services

2.1 Components and CBSs

Component-based software engineering is a paradigm that emphasizes compos-
ability and reuse of software components. Software components are loosely cou-
pled self-contained runtime units that provide services specified by interfaces.
To provide their services, they may require external services. Fig. 1 shows the
UML representation of the VoiceToTextConverter component, where the pro-
vided services (VoiceProcess) are pictured by a bullet and the required services
(TextProcess) by a socket. Unlike objects, software components bring the re-
quired services at the same level as the provided ones. As a result, components
are building blocks that can be assembled by binding required to provided ser-
vices if their interfaces match, to deliver a composite service with added value.

Flexibility is one of the main advantages of component-based development.
Components are versatile and reusable in different contexts. In an assembly, a

Comp-O: an OWL-S Extension for Composite Service Description 3

Fig. 1: UML representation of the VoiceToTextConverter component

component can be replaced at design or execution time by another component
that offers an “equivalent” functionality, this equivalence being based on com-
patibility of the interfaces. Interfaces specify a contract of use containing the
type of the inputs and outputs, pre-conditions to satisfy when invoking the ser-
vice and guaranteed post-conditions. We call component-based service (CBS) a
service that is provided by a software component. If the latter requires exter-
nal services, the CBS is implemented by an assembly, and its actual semantics
depends on the components that are involved in the assembly.

2.2 Illustrative examples

The right side of Fig. 2 represents the TextPrinter component that provides the
CBS called PrintText. PrintText takes a Text as the only input: when invoked,
the text is printed and there is no result in return. Like a Web service, PrintText
is ready to use since TextPrinter has no required interface.

The VoiceProcess service provided by the VoiceToTextConverter component
is however not ready to use. To make it work, the TextProcess required service
must be bound to a CBS that takes a text as input, e.g., PrintText of TextPrinter
(assuming that PrintText matches TextProcess). Fig. 2 represents an assembly
that implements a component-based composite service that takes a voice record
as input, converts it to a text, and prints it.

Fig. 2: Implementation of the VoiceProcess composite service

As components are replaceable, a TextTransformer component can be in-
serted between VoiceToTextConverter and TextPrinter (assuming the services

4 Authors Suppressed Due to Excessive Length

match), to translate the text before printing it. The result is shown in Fig. 3:
when invoked, the TextTransformer component demands the translation in French
of the input text then requires the PrintText service.

Fig. 3: Another implementation of the VoiceProcess composite service

2.3 Issues

In the previous section, two implementations of the VoiceProcess composite ser-
vice have been presented in Fig. 2 and Fig. 3: although its interface does not
change, the semantics vary from one implementation to another (print a speech,
print a speech after its translation into French, . . .). So, the true nature of a
CBS depends on the components that compose the implementing assembly and
what these components actually do. Thus, to determine this nature, it is nec-
essary to inspect the different components. In a component, how a service is
delivered depends on the services the component requires, the ordering of the
requests and the internal operating process. Therefore, describing CBSs with
interfaces only, i.e., as black boxes, is not enough. Interfaces support matching
but do not make the behavior explicit. For example, they do not specify that
the PrintText service of the TextPrinter component prints the text on paper or
elsewhere. Maybe a human could guess this information from the service name,
but a machine certainly could not.

Thus, to support efficient service discovery and composition, CBSs must be
described semantically. The problem is to build the semantic description of a CBS
by a combination of the ones of the components’ services. Indeed, describing ser-
vices provided by a component with one or more required services is fundamental
for our work. In addition, these unit descriptions must be combinable.

3 Requirements and comparison with existing ontologies

The development of the requirements of our ontology is compliant with the NeOn
methodology [4]. We have specified the purposes and the scope of the ontology,

Comp-O: an OWL-S Extension for Composite Service Description 5

the uses and the final users, and the competency questions the ontology should
satisfy. Competency questions are used to evaluate existing ontologies.

3.1 Purposes and scope

The motivation and final goal of this ontology is to offer a way to describe
CBSs, in particular the service offered and the required interfaces that must be
bound to make a service operational. Concomitantly, during the development of
a new service built with CBSs, the description of each service can be used to
automatically generate the description of the composite service.

We have identified two types of users : the service publishers and the service
developers. A service publisher is an agent wishing to publish the description
of CBSs or composite services that will be invokable and bindable. A service
developer is an agent wishing to bind one or more published services to build
a more complex application. In both cases, the services must be described as
unambiguously as possible in order to automatize the tasks.

3.2 Competency questions

These competency questions come from an analysis of the component-based soft-
ware engineering domain and several use cases [1,5] similar to the one presented
in 2.2. The use cases are not seen as an end per se, but as an instantiation
of the general domain of component-based software engineering. Therefore, the
competency questions presented in Table 1 represent the knowledge required for
a reusable ontology, with no regard for the application domain. The answers
are simplified for the sake of readability but should be represented thanks to
corresponding resources.

ID Competency questions Answers

CQ1 What are all the available services? (S1, S2, S3); ()

CQ2 What are the types of the inputs of the service S1? (Boolean, Int); (String);

CQ3 What are the types of the outputs of the service S1? (ON/OFF Command, Int); (ON/OFF State); ()

CQ4 What are the preconditions of the service S1? (cond1; cond2); (cond1); ()

CQ5 What are the post-conditions of the service S1? (cond1; cond2); (cond1); ()

CQ6 What is the service offered by the service S3? Square root

CQ7 Does the service S1 invoke any services? Yes; No

CQ8 What services are invoked by the service S1? (S2; S3); (S4); ()

CQ9 What is the internal orchestration of the service S1? (invokeS2, invokeS3); (invokeS2); ()

CQ10 Is the service S1 a component-based service? Yes; No

CQ11 What are the required interfaces of the service S2? (perform1, perform2); ()

CQ12 What are the types of the inputs of the service required by the required interface perform1? (ON/OFF Command); (Int); ()

CQ13 What are the types of the outputs of the service required by the required interface perform1? (Boolean); (String);

CQ14 What are the post-conditions of the service required by the required interface perform1? (cond1, cond2); (cond1); ()

CQ15 What are the preconditions of the service required by the required interface perform1? (cond2); ()

CQ16 Is the service S1 already bound with any other services? Yes; No

Table 1: Competency questions

In CQ8 , the notion of service binding is only relevant for CBSs as it means
that the service S1 invokes another service through one of its required interfaces.
CQ9 is crucial for the generation of composite service descriptions as the be-
havior of the internal orchestration will help deducing the operational aspects

6 Authors Suppressed Due to Excessive Length

of the service. The expected answer is an ordered list of operations executed by
the service such as invocations, variables operations and returns.

3.3 Comparison with existing ontologies

As recommended by NeOn, reusable ontologies that are compliant with parts of
the requirements have been integrated in our design process. Therefore, we have
used the competency questions to analyze which ontologies satisfy which part
of the requirements. We compared six ontologies: SAREF [6], SOSA/SSN [7],
MSM [8], OWL-S [9] (formerly DAML-S), WSML [10] and HRests [11]. For each
competency question, the absence of star means that the corresponding ontology
does not satisfy at all the question, one star means that the question is partially
covered and two stars that the question is totally satisfied.

Competency Question CQ1 CQ2 CQ3 CQ4 CQ5 cQ6 CQ7 CQ8 CQ9 CQ10 CQ11 CQ12 CQ13 CQ14 CQ15 CQ16

SAREF ** ** ** - - - - - - - - - - - - -

SOSA/SSN ** * * - - - * * - - - - - - - *

MSM ** ** ** - - - - - - - - - - - - -

OWL-S ** ** ** ** ** ** ** ** ** - - - - - - *

WSML ** ** ** ** ** ** ** - - - - - - - - -

HRests ** ** ** - - - - - - - - - - - - -

Comp-O ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

Table 2: Comparison between the competency questions and the ontologies

All the studied ontologies cover the questions CQ1, CQ2 and CQ3 as they
all provide a way to type a resource as a service and to define the types of its
inputs and outputs. WSML also covers CQ4, CQ5 and CQ6 but not the others
as WSML describes a service as black-box, without information about its inter-
nal working. SOSA/SSN only partially satisfies the questions CQ7 and CQ8 as
the invocation of a service by another should be described by using the observes
and detects properties. However, by using these predicates, the semantics are
different since the service S2 is not invoked by S1 per se but is self invoked when
a new observation is detected, as SOSA/SSN is used to describe sensors and ob-
servations and is not dedicated to services. OWL-S totally satisfies CQ4, CQ5,
CQ6, CQ7, CQ8 and CQ9. Preconditions and post-conditions can be described
in the profile of the service. Invocations of other services and internal orchestra-
tion are described in the service’s process. Moreover, the service offered can be
semantically described using the preconditions and post-conditions. SOSA/SSN
and OWL-S partially cover CQ16 as they both provide a mechanism to describe
the invocation or actuation of a service by another but is not specific enough to
describe the binding of an interface with a service. The binding of interfaces is a
mechanism specific to CBSs where SOSA/SSN and OWL-S are used to describe
Web services. No studied ontology satisfies questions CQ10 to CQ15.

Based on the comparison, we conclude that OWL-S is the ontology that
covers the best our requirements. We develop Comp-O, an extension for OWL-S
that covers all the competency questions.

Comp-O: an OWL-S Extension for Composite Service Description 7

4 Comp-O, an OWL-S extension for CBSs

Comp-O is a minimal ontology extending OWL-S that helps to efficiently de-
scribe CBSs. The ontology is available at https://github.com/comp-o. All the
namespaces used in this paper are given in Table 3. This section presents the
key concepts of OWL-S, an overview of Comp-O and an example of a CBS
description using this ontology.

Prefix Namespace

service http://www.daml.org/services/owl-s/1.2/Service.owl#

profile http://www.daml.org/services/owl-s/1.2/Profile.owl#

process http://www.daml.org/services/owl-s/1.2/Process.owl#

comp-o https://comp-o.github.io/comp-o#

Table 3: Namespace prefixes used in this paper

4.1 Key concepts of OWL-S

As explained in [9], the description of a service with OWL-S is split in three
parts, the service profile presents what the service does, the service grounding
how to access it and the service model how to use it. We focus on the service
profile as the purpose of our work is on the behavior of CBSs, their internal
orchestrations and their interfaces.

A service:ServiceProfile presents the service’s parameters (process:Inputs and
process:Outputs), the process:Precondition and the process:Results (outputs and
effects). The profile describes the service as a black-box as the description is dedi-
cated to its contract and not to its behavior with the clients nor its orchestration.
To describe the internal orchestration of a service, a process:CompositeProcess
can be linked to the process resource which is defined in a service profile. A
composite process is used to describe the choreography of messages between the
client and the service but also to the invocation of others services. As explained
in [9], ”any composite process can be considered a tree whose nonterminal nodes
are labeled with control constructs, each of which has children specified using
components. The leaves of the tree are invocations of other processes, indicated
as instances of class process:Perform (an invocation of another service)”. Based
on this definition, we defined in Comp-O a new control construct used to describe
the required interfaces of CBSs.

4.2 Comp-O: concepts and properties

An overview of Comp-O is presented in Fig. 4. The ontology defines three new
concepts, and one object property.

ComponentBasedService is the first and main concept: it is a service that
can have no or several RequiredPerform (required interface) in its process, and
that is not operational until all its RequiredPerform are replaced with an actual
perform referencing another process.

A Required perform is a sub concept of the Perform control construct: it
describes a required interface. It references a service interface through the re-
quiredPerformContract predicate.

https://github.com/comp-o
http://www.daml.org/services/owl-s/1.2/Service.owl
http://www.daml.org/services/owl-s/1.2/Profile.owl
http://www.daml.org/services/owl-s/1.2/Process.owl
https://comp-o.github.io/comp-o

8 Authors Suppressed Due to Excessive Length

Fig. 4: Architecture of Comp-O

The third concept is the Service contract : it is a ServiceProfile that does not
specify an implementation through the has process predicate. Practically, this
concept is used to define the types of the inputs and outputs and the pre/post-
conditions specified by a required interface.

Finally, the requiredPerformContract predicate is used to link a RequiredPer-
form with the ServiceContract it requires.

4.3 Use case and instantiation

This section contains the descriptions of the CBSs presented in 2.2. We focus on
the most original and key services that highlight the different uses of Comp-O.

A CBS with no required interface can be described as a Web service. There-
fore, the TextPrinter service description does not need to use Comp-O at all but
can rely on OWL-S only. Obviously, CBSs described with Comp-O can still be
bound with traditional OWL-S services like TextPrinter.

As explained in 4.2, a required interface of a CBS is described with the
comp-o:RequiredPerform concept. This concept is a special Perform that does
not reference a concrete service but a service contract specifying the type of
the inputs and outputs, the preconditions and the post-conditions. Therefore, to
describe the VoiceToTextConverter, instead of referencing another service with a
Perform as presented in Listing 1.1, we can now use the comp-o:RequiredPerform
as shown in Listing 1.2.

:voice -to-text -converter -perform
rdf:type process:Perform ;
process:process :the -other -process;

Listing 1.1: Invocation of another process with OWL-S

:voice -to-text -converter -req -interface
rdf:type comp -o:RequiredPerform ;
comp -o:requiredPerformContract :text -input -contract ;
process:hasDataFrom # ...

:text -input -contract
rdf:type comp -o:ServiceContract ;
profile:hasInput [

rdf:type process:Input ;
process:parameterType "[...]# Text" .

] ;

Listing 1.2: Comp-O description of the VoiceToTextConverter required interface

Comp-O: an OWL-S Extension for Composite Service Description 9

Also, to describe a service with several required interfaces, the mechanism
is the same as the one used to describe VoiceToTextConverter. A process can
contain an unlimited number of comp-o:RequiredPerform.

5 Using Comp-O

5.1 Assisted building of composite services

To assist the developer, we propose a multi-step approach synthesized in Fig. 5.

Fig. 5: Building of a Comp-O assembly

In a first step, a list of the available CBSs is presented. To do so, all that is needed
is to retrieve the set of resources typed by the service:Service class. Then, the
service developer must choose the “root” service, i.e., the service to implement.
Comp-O helps to determine whether the component that provides the chosen
service has any required interface. A component has a required interface if one
of the control constructs of the process of the service it provides is a comp-
o:RequiredPerform. This property can be comprehensively checked considering
the OWL-S control constructs using the SPARQL request of Listing 1.3.

ASK {
<service > service:presents/profile:has_process/process:composedOf /(

process:then|process:else|process:whileProcess|process:untilProcess|
process:components)*/(owl -list:rest*)/owl -list:first+ ?instruction .

?instruction a comp -o:RequiredPerform
}

Listing 1.3: SPARQL request to determine whether a service requires to be bound

If the component providing the chosen service does not require any service,
it can be described as an OWL-S service, whose description is available and
publishable as it is. Contrariwise, if the component has one or more required
service, the latter must be bound to external CBSs.

If so, to ease the binding decisions, it is possible to determine if a provided
service is compatible with a required one, i.e., if the two services match. This
requires to check if the types of the inputs and outputs, the preconditions and
the post-conditions match. The strategy used to determine whether there is a
match depends on the application domain; it is not specified in our solution but
several proposals have been made (see e.g., [2], [12] and [13]).

10 Authors Suppressed Due to Excessive Length

Finally, when a required service is bound and if the provider also has one or
more required services, this step must be repeated for these services until the
assembly is closed, i.e., all the required interfaces in the assembly are bound. At
this point, an assembly is available and its description can be generated.

5.2 Automatic generation of Comp-O composite service descriptions

We propose an algorithm that implements the generation of a composite service
description from an assembly.

The first step consists in replacing every comp-o:RequiredPerform by a pro-
cess:Perform referencing the process associated in the assembly, using the pro-
cess:process predicate instead of referencing a comp-o:ServiceContract via the
comp-o:requiredPerformContract predicate. The process of a CBS references as
variables the inputs and outputs of a comp-o:ServiceContract it requires. For
each service, the second step is therefore to replace the references to these vari-
ables by references to the equivalent variable of the associated service. This
step can be easily accomplished by processing all the process:fromProcess pred-
icates having as object a resource of the type comp-o:ServiceContract. After
these steps, all the CBSs are now described as services with OWL-S since their
required interfaces are bound with other services.

5.3 Proof of concept

To ensure and show that the solution works, we have developed a proof of con-
cept (POC) that implements it. It is available online at https://github.com/

comp-o/comp-o-poc. It proposes a command line interface that helps the user to
build the composition plan and outputs the OWL-S description of the assembly.
The POC has been used to test the approach against twelve key CBSs chosen
for their representativity of the recurrent topologies encountered in component-
based software engineering. The description of these services also are available
online and are not described in this paper due to space limitation.

6 Conclusion and perspectives

This paper has introduced Comp-O, an extension of OWL-S for CBSs, which are
services provided by software components. Comp-O has been developed following
the principles of the Neon methodology. One of them is the reuse of ontologies
that partially meet the requirements.

As OWL-S is the most compliant with our requirements, we have proposed
to extend it: Comp-O supports the description of required services and a com-
bination of descriptions in order to automatically generate the description of
composite services. Beyond the semantic description of services for publication
purposes and to facilitate their discovery, Comp-O helps the developer: at design
time, based on Comp-O, the matching between required and provided interfaces
can be controlled and the services (so, the components) that are available for

https://github.com/comp-o/comp-o-poc
https://github.com/comp-o/comp-o-poc

Comp-O: an OWL-S Extension for Composite Service Description 11

the composition may be proposed. In addition, supplying the description of the
composite services under construction gives the engineer useful feedback. Us-
ing a proof-of-concept prototype, we have demonstrated the ability to assist
the service developer and to automatically generate composite descriptions from
component unit descriptions that have required services.

Now, we plan to use Comp-O in an ongoing project carried out in our team,
which aims to make user-oriented services emerge at runtime in ambient envi-
ronments. There, an intelligent engine builds on the fly composite services from
software components present at the time in the environment, without having
been required by the user. As a consequence, composite services that emerge
must be described to inform the user who can accept, modify or reject them.
Then, a user-intelligible description is required for a sound understanding of the
service, that could be computed from the Comp-O generated description.

References

1. I. Sommerville. Component-based software engineering. In Software Engineering,
chapter 16, pages 464–489. Pearson Education, 10th edition, 2016.

2. M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bernstein. Semantic Web
Service Search: a Brief Survey. KI-Künstliche Intelligenz, 30(2):139–147, 2016.

3. K. Kurniawan, F.J. Ekaputra, and P.R. Aryan. Semantic Service Description and
Compositions: A Systematic Literature Review. In ICICoS, pages 1–6, 2018.

4. M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-López. The NeOn
Methodology for Ontology Engineering, pages 9–34. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

5. M. Koussaifi. User-oriented Description of Emerging Services in Ambient Systems.
In Int. Conf. on Service-Oriented Computing, PhD Symposium (ICSOC 2019),
number 12019 in LNCS. Springer, 2019.

6. L. Daniele, F. den Hartog, and J. Roes. Created in close interaction with the
industry: The smart appliances reference (saref) ontology. In Roberta Cuel and
Robert Young, editors, Formal Ontologies Meet Industry, 2015.

7. A. Haller, K. Janowicz, S. Cox, M. Lefrançois, K. Taylor, D. Phuoc, J. Lieber-
man, Raúl Garćıa C., R. Atkinson, and C. Stadler. The SOSA/SSN Ontology: A
Joint W3C and OGC Standard Specifying the Semantics of Sensors, Observations,
Actuation, and Sampling. Semantic Web, 2018.

8. MSM: Minimal Service Model (LOV), 2017.
https://lov.linkeddata.es/dataset/lov/vocabs/msm.

9. OWL-S: Semantic Markup for Web Services, 2004.
https://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

10. J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The web service modeling
language wsml: An overview. In York Sure and John Domingue, editors, The
Semantic Web: Research and Applications, pages 590–604, 2006.

11. J. Kopeckỳ, K. Gomadam, and T. Vitvar. hrests: An html microformat for de-
scribing restful web services. In 2008 IEEE/WIC/ACM, volume 1, pages 619–625.
IEEE, 2008.

12. M. Klusch, B. Fries, and K. Sycara. Owls-mx: A hybrid semantic web service
matchmaker for owl-s services. Journal of Web Semantics, 7(2):121 – 133, 2009.

13. G. Fenza, V. Loia, and S. Senatore. A hybrid approach to semantic web services
matchmaking. Int. J. Approx. Reason., 48:808–828, 2008.

	Comp-O: an OWL-S Extension for Composite Service Description

