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Abstract. Ontology merging systems enable the reusability and
interoperability of existing knowledge. Ideally, they allow their users to
specify which characteristics the merged ontology should have. In prior
work, we have identified Generic Merge Requirements (GMRs) reflecting
such characteristics. However, not all of them can be met simultaneously.
Thus, if a system allows users to select which GMRs should be met, it
needs a way to deal with incompatible GMRs. In this paper, we analyze
in detail which GMRs are (in-)compatible, and propose a graph based
approach to determining and ranking maximum compatible supersets
of user-specified GMRs. Our analysis shows that this is indeed feasible
to detect the compatible supersets of the given GMRs that can be
fulfilled simultaneously. This approach is implemented in the open source
CoMerger tool.
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1 Introduction

An ontology is a formal, explicit description of a given domain. It contains a set of
entities, including classes, properties, and instances. Ontology merging [1] is the
process of creating a merged ontologyOM from a set of source ontologiesOS with
a set of corresponding pairs extracted from a given mapping. Various ontology
merging systems [2–16] provide different sets of criteria and requirements that
their merged ontologies should meet. In [17], we have analyzed the literature
and determined which criteria, called Generic Merge Requirements (GMRs),
are used by different approaches. Customizing the GMRs within an ontology
merging system provides a flexible merging approach, where users can actively
choose which requirements are important to them, instead of allowing only a
very indirect choice by picking a merge system that uses their preferred set of
criteria. Unfortunately, not all GMRs are compatible. For instance, one may
want to preserve all properties contained in the original ontology in the merged
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ontology. On the other hand, one could wish to avoid cycles. Likely, these goals
conflict.

The motivation behind this work is to enable merging systems to take
user input into consideration, so ultimately, to have user-requirement driven
ontology merging. Our proposal allows flexibility on the user side to select an
arbitrary set of GMRs. Thus, once a user has chosen a set of important GMRs,
a system is needed to check their compatibility and suggest a maximum set
of requirements that can be met simultaneously. In this paper, we analyze in
detail the (in)compatibility of GMRs and describe a graph based approach to
determining maximal compatible sets for the given GMRs. Further, an automatic
ranking method is proposed on the set of the system suggested compatible sets.
The proposed framework is conservative and finds potential conflicts in GMRs.
For a given ontology, not all of these potential conflicts may materialize. We
discuss in Sec. 3, how the approach could be extended to leverage this. GMRs are
implemented in CoMerger [18] and are publicly available and distributed under
an open-source license. We have empirically analyzed various merged ontologies
for the given set of user-selected GMRs, and observed that there is a superset
of compatible GMRs that can be fulfilled simultaneously.

The rest of the paper is organized as follows. Sec. 2 surveys GMRs. The
proposed method of compatibility checker of GMRs is presented in Sec. 3.
In Sec. 4, the compatible sets are ranked. An empirical analysis of GMRs is
demonstrated in Sec. 5. The paper is concluded in Sec. 6.

2 Survey on Generic Merge Requirements

Generic Merge Requirements (GMRs) are a set of requirements that the merged
ontology is expected to achieve. GMRs have been first introduced in the Vanilla
system [1]. Later other merge approaches implicitly or explicitly took them into
consideration [2–8,10–16,19,20]. To provide customizable GMRs in an ontology
merging system, we surveyed the literature to compile a list of GMRs. This
investigation lead to twenty GMRs [17], summarized in Table 1. They have
been categorized in six aspects: completeness (R1 -R7 ), minimality (R8 -R11 ),
deduction (R12), constraint (R13 -R15 ), acyclicity (R16 -R18 ), and connectivity
(R19 and R20 ). This list has been acquired by studying three different research
fields:

1. Ontology and model merging methods: The GMRs R1 -R6, R8 -R16, R19
have been extracted from existing ontology and model merging methods
such as [2, 3, 6]. These approaches aim to implicitly or explicitly meet at
least one of the GMRs on their merged ontology.

2. Ontology merging benchmarks: The existing benchmarks [21, 22] on the
ontology merging domain introduced general desiderata and essential
requirements that the merged ontology should meet. The criteria stated in
these benchmarks are based on earlier research in [23], a study of the quality
measurement of the merged ontology. In this respect, R1, R4, R7 - R9 have
been extracted from these research studies.
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Fig. 1: The GMRs’ compatibility checker within the ontology merge system.

3. Ontology engineering : Researchers of the ontology engineering domain [24–
26] came up with a set of criteria to present the correctness of an ontology,
which is developed in a single environment. It is worthwhile to consider
these criteria also on the merged ontology because the newly created merged
ontology may be viewed the same as the developed ontologies in this category.
Not all of these criteria can be extended in the ontology merging scenario
since some relate to the problem of the source ontologies modeling, in which
the merge process can not affect them. In this regards, we recast R15 - R20
from this category.

To the best of our knowledge, there is no general compatibility checker
between the GMRs in the literature. However, the approach in [27] proposed
a resolution for conflicts that occurred by applying R13 and R14.

3 Proposed Approach for Checking GMRs Compatibility

In this section, we describe our approach to finding maximum compatible
supersets of user-specified GMR. Basically, what we do is first find subsets of
the GMRs specified by the user that are compatible, and second, extend those
by further GMRs, (out of those the user had not selected), while maintaining
compatibility. Our intuition is that first, as much as possible of what the user
wanted should be met and that second, adding further GMRs will, in general,
improve the quality of the merged ontology.

Therefore, a framework is required to detect the compatibility of the
user-selected GMRs. We propose such a framework within the ontology merge
system, as shown in Fig. 1. The source ontologies are merged based on the
user-selected GMRs. Users can request to check the compatibility of the selected
GMRs. To achieve this, we build a graph G of the interactions between the
GMRs. We then recast the problem at hand by selecting the maximal superset



Table 1: Generic Merge Requirements (GMRs).
R1 - Class preservation: All classes of source ontologies

should be preserved in the merged ontology [1, 2, 4–11,21–23].
R2 - Property preservation: All properties of source

ontologies should be preserved in the merged ontology [1, 2, 4, 5, 12].
R3 - Instance preservation: All instances of source

ontologies should be preserved in the merged ontology [1, 2, 4, 13].
R4 - Correspondence preservation: The corresponding entities from source

ontologies should be mapped to the same merged entity [1, 2, 8, 22].
R5 - Correspondences’ property preservation: The merged entity

should have the same property of its corresponding entities [1, 8].
R6 - Property’s value preservation: Properties’ values from the
source ontologies should be preserved in the merged ontology [1, 8].

R7 - Structure preservation: The hierarchical structure of source ontologies’
entities should be preserved in the merged ontology [23].

R8 - Class redundancy prohibition: No redundant classes should exist in
the merged ontology [1, 2, 5, 10,14–16,21,23].

R9 - Property redundancy prohibition: No redundant properties should
exist in the merged ontology [4, 12,21].

R10 - Instance redundancy prohibition: No redundant instances should
exist in the merged ontology [7, 13].

R11 - Extraneous entity prohibition: No additional entities other than the
source ontologies’ entities should be added in the merged result [1].
R12 - Entailment deduction satisfaction: All entailments of the

source ontologies should be satisfied in the merged ontology [3, 5].
R13 - One type restriction: Any merged entity should have one data type [1].
R14 - Property value’s constraint: Restriction on property’s values from

source ontologies should be applied without conflict in the merged ontology [1, 3].
R15 - Property’s domain and range oneness: The merge process should

not result in multiple domains or ranges defined for a single property [25].
R16 - Acyclicity in the class hierarchy: The merge process should not

produce a cycle in the class hierarchy [1, 2, 4, 6, 11,19,23–25].
R17 - Acyclicity in the property hierarchy: The merge process should not

produce a cycle between properties w.r.t. the is-subproperty-of relationship [20,25].
R18 - Prohibition of properties being inverses of themselves: The merge

process should not cause an inverse recursive definition on the properties [25].
R19 - Unconnected class prohibition: Each connected class from source

ontologies should not be unconnected in the merged ontology [1, 6, 25].
R20 - Unconnected property prohibition: Each connected property from

the source ontologies should not be unconnected in the merged ontology [8, 25].

of the user-selected GMRs as RS = {rs1, rs2, ..., rsz}. These results are ranked,
sorted, and returned to the user. More precisely, the framework performs the
following steps:

1. A graph G is built based on the interactions between GMRs.



Table 2: Scope of changes by applying GMRs in the merged ontology.
Scope Sub-Scope Explanation

Scope 11 Classes origin from source ontologies
Scope 1-

Scope 12 Redundant classes
Classes

Scope 13 Extra classes that do not belong to any source ontologies

Scope 21 Properties origin from source ontologies
Scope 2

Scope 22 Redundant properties
Properties

Scope 23 Extra properties that do not belong to any source ontologies

Scope 31 Instances origin from source ontologies
Scope 3-

Scope 32 Redundant instances
Instances

Scope 33 Extra instances that do not belong to any source ontologies

Scope4- Values
- Values of properties in the merged ontology

of properties

2. The compatible subsets of the user-selected GMRs are extracted from the
G. Then, they will be extended to the maximal compatible superset.

3. The detected sets are ranked and ordered.
4. An ordered list of compatible sets is returned to the user.

In the next sub-section, building the GMRs interaction graph G and
extracting the compatible supersets in the graph will be explained.

3.1 Building GMRs Interactions Graph G

The Graph Builder component in Fig. 1 takes as input the GMRs catalogue
and creates the graph G. The GMRs’ interaction graph G = (V,E) demonstrates
the interaction between GMRs, where V is the set of vertices representing the
GMRs (see Table 1), and E is the set of edges. In this graph, two GMRs are
connected via an edge if they are compatible. To define the compatibility of
GMRs (existence of an edge between two GMRs in G), two conditions are defined:

Condition I. The scope of changes by a GMR on the merged ontology can
reveal its (in-)compatibility with others. Thus, two GMRs are compatible if they
do not modify the same scope of entities. The changes made by each GMR are
applied to the classes (scope 1), properties (scope 2), instances (scope 3), and
value of properties (scope 4), defined by the union of sub-scopes, as shown in
Table 2. We distinguish between two scopes:

– Direct scope: It is the main scope that is affected by applying a GMR. E.g.,
applying R1 adds missing classes, so the direct scope of R1 is the classes.

– Indirect scope: It is the scope that might be affected by the changes made
on the direct scope. E.g., applying R8 deletes the redundant classes (direct
scope is redundant classes). However, as a side effect of this operation,
this might cause the properties connected to those classes to become
unconnected, or their instance to be orphaned. Thus, the indirect scopes
of R8 are properties and instances.



Condition II. Let us illustrate our intuition to require the second
condition with an example by considering R2 (property preservation) and
R5 (correspondences’ property preservation). R2 may make changes to the
properties, and R5 possibly makes changes to the properties of the corresponding
classes. So, both GMRs apply changes on the same set of entities (Scope 21).
However, it cannot be concluded that both GMRs are incompatible because
the operations that both carry on the merged ontology do not have any
contradiction. R2 uses the add operation to preserve the missing properties.
R5 also uses the add operation to add missing properties of the corresponding
classes. So, both these actions can be performed simultaneously in the merged
ontologies without conflict. As a whole, three types of operation are performed
to meet the GMRs and ensure their fulfillment: (1) Add: e.g., R1 uses the add
operation to preserve the missing classes in the merged ontology. (2) Delete: e.g.,
R8 uses the delete operation to get rid of redundant classes. (3) A combination
of add and delete: e.g., R4 uses add and delete operations, in which for two
corresponding classes c1 and c2 that are not mapped to the integrated class c′,
first, c1 and c2 will be deleted, then c′ will be added. Table 3 shows the scopes and
operations of each GMR. For some GMRs, there are different possible operations.
We followed one solution in this paper and marked the alternative one by the
symbol ?.

Although applying each GMR may change direct and indirect scopes, their
operations carry on the direct scope. Therefore, to determine the compatibility
of the GMRs, the type of operations performed by each GMR on the direct
scope should be taken into account. In this regards, when two GMRs change the
same set of entities, they can still be compatible if both use the same operation.
Let µ(Rj) be a set of entities that get affected by applying Rj ∈ GMRs on the
merged ontology, i.e., the direct scope. Given the conditions mentioned above,
we define the compatibility between Rj and Rk ∈ GMRs as:

Definition 1. Rj is compatible with Rk (Rj ‖ Rk) if Rj and Rk modify different
scopes of entities in the merged ontology, i.e., µ(Rj) 6= µ(Rk). If µ(Rj) = µ(Rk),
the type of operation of the applying Rj and Rk should be the same.

Accordingly, there could be four variants between the scope of changes and
the types of operation, as:

Case A- Same Scopes and Same Operations: In this case, the scope of entities
affected by applying Rj and Rk, is the same. Moreover, Rj and Rk use the
same type of operations. Since both GMRs use the same operation on the
same set of entities, they are compatible with each other.

• Example: R2 ‖ R7. R2 and R7 both make changes in the properties
origin from the source ontologies. Moreover, R2 uses the add operation
to add the missing properties. R7 uses the add operation to add the
missing is-a properties in order to preserve the hierarchy structure of the
source ontologies in the merged ontology. Thus, both are compatible.

Case B- Same Scopes with Different Operations: In this case, the set of entities,
getting affected by applying Rj and Rk, is the same. However, Rj and Rk



Table 3: The scopes and operations of each GMR. The symbol ? indicates an
alternative solution.

Direct Indirect
GMR

Scope Scope
Operation Description

R1 S11 - add It adds missing classes of the source ontologies.
R2 S21 - add It adds missing properties of the source ontologies.
R3 S31 - add It adds missing instances of the source ontologies.

S11
S2 add & If two corresponding classes c1 and c2 are not mapped to the one
S3 delete integrated class c′, first, c1 and c2 is deleted, then c′ will be added.

S21
S1 add & It follows the procedure the same as the R4 -scope 1-1

R4

S3 delete but one the properties.
R5 S21 - add It adds missing properties of the corresponding classes.
R6 S4 - add It adds missing values of the properties.
R7 S21 - add It adds is-a properties to the respective class.
R8 S12 S2, S3 delete It deletes redundant classes.
R9 S22 S1, S3 delete It deletes redundant properties.
R10 S32 S1 delete It deletes redundant instances.

S13 S1, S2,
delete It deletes extra entities.S23 S3

R11
S33
S11 -

add
It adds some entities to achieve the entailment the same

S21 -
as the source ontologies.

R12
S31 -

R13 S4 - delete It keeps only one of the data types and deletes the other one.
R14 S4 - delete It keeps only one value of the property and deletes the other one.

S11 S2, S3
add & It might add multiple domains or ranges as
delete the unionOf to the property.R15
delete? It might delete multiple domains or ranges and only keep one of them.

S2 S1 delete It might delete some properties to be free of cycles.
R16

S1 S2, S3 delete? It might delete some classes to be free of cycles.
R17 S2 S1 delete It deletes properties to be free of the cycle on the properties’ hierarchy.
R18 S2 S1 delete It deletes the inverse of properties.

S2 - add It might add is-a relations to connect the unconnected classes.
R19

S1 S2, S3 delete? It might delete unconnected classes.

S2
S1 delete? It might delete the unconnected properties.

R20
- add

It might use the add operation to connect the unconnected properties
to the classes.

use different types of operations. Since both use the different operations on
the same set of entities, they are incompatible with each other.
• Example: R2 ∦ R17. Both R2 and R17 change properties. R2 adds

missing properties, whereas R17 may delete some properties to achieve
acyclicity. Thus, it may happen that applying R17 reverses the changes
made by R7 and vice versa.

Case C- Different Scopes with the Same Operations: In this case, the set of
entities, getting effect by applying Rj and Rk, is different. Moreover, both
use the same type of operations. Since both GMRs using the same operation
but on different sets of entities, they are compatible.
• Example: R1 ‖ R2. Preserving the classes in the merged ontology

will make some changes in the classes in R1. However, preserving the
properties will modify the properties in R2. These two GMRs do not
change the same group of entities. Moreover, both use the add operation
for applying these GMRs. Since both GMRs use the same operation but
on different sets of entities, they are compatible.



Table 4: Compatibility interaction between GMRs. fd shows the compatibility
degree.

GMR Compatible GMRs fd

R1 R2, R3, R5 -R14, R16 -R20 0.89
R2 R1, R3, R5 -R15, R19, R20 0.79
R3 R1, R2, R4 -R20 1
R4 R3, R6, R8 -R11, R13, R14 0.74
R5 R1 -R3, R6 -R15, R19, R20 0.79
R6 R1 -R5, R7 -R12, R15 -R20 0.89
R7 R1 -R3, R5, R6, R8 -R15, R19, R20 0.79
R8 R1 -R7, R9 -R20 1
R9 R1 -R8, R10 -R18 0.89
R10 R1 -R9, R11 -R20 1
R11 R1 -R10, R12 -R18 0.89
R12 R1 -R3, R5 -R11, R13, R14, R19, R20 0.74
R13 R1 -R5, R7 -R12, R14 -R20 0.95
R14 R1 -R5, R7 -R13, R15 -R20 0.95
R15 R2, R3, R5 -R11, R13, R14, R16 -R20 0.84
R16 R1, R3, R6, R8 -R11, R13 -R15, R17, R18 0.63
R17 R1, R3, R6, R8 -R11, R13 -R16, R18 0.63
R18 R1, R3, R6, R8 -R11, R13 -R17 0.63
R19 R1 -R3, R5 -R8, R10, R12 -R15, R20 0.68
R20 R1 -R3, R5 -R8, R10, R12 -R15, R19 0.68

Case D- Different Scopes and Different Operations: In this case, applying Rj

and Rk is performed on different sets of entities. Moreover, both use different
types of operations. Since both use different operations on the different entity
sets, they are completely separated and do not have any effect on each other.
So, they are compatible.

• Example: R1 ‖ R11. R1 makes changes in the classes origin from source
ontologies (scope 11). R11, in addition to changing properties, modifies
the extra classes (scope 13). So, the scopes of changes by these two GMRs
are on the different entity sets. R1 uses the add operation, while R11
uses delete operation. Since both use the different operations on different
sets of entities, they are compatible.

Considering the scope and the operation of each GMR, the interaction
between GMRs can be concluded in Table 4, in which Rj is considered
compatible with Rk if the intersection of all its sub-scopes is compatible. Thus,
the graph G has edges between the compatible GMRs, as stated in Table 4. The
compatibility degree fd for each GMR Rj is the number of compatible GMRs
with Rj divided by the total number of GMRs, as shown in the last column.
R3, R8, and R10 are compatible with all other GMRs. R13 and R14 have high
compatibility as the scope of their changes is different from the others. R16,
R17, and R18 are the least compatible.



3.2 Clique Finder

Given the GMRs interaction graph G and the set U containing the GMRs the
user is interested in, we aim to find the maximal superset of V containing all
vertices out of U and no incompatible nodes. This may not always be achievable
since the user might have chosen incompatible GMRs already. In this case, we
search for a maximal superset of V in G that preserves as many nodes out of U as
possible and contains compatible nodes only. Thus, the Clique Finder component
in Fig. 1 takes as input a set of user-selected GMRs U alongside with the GMRs’
interaction graph G. It returns a set of all possible compatible sets, namelyRS =
{rs1, rs2, ..., rsl}. Each suggested compatible set rs ∈ RS contains (all/part)
of the user-selected compatible GMRs, and compatible GMRs additionally all
other. For the given user-selected GMRs, each suggested compatible set rs is
formulated in Eq. 1.

rs = UC ∪ UEC (1)

where, UC is a compatible subset of U , and UEC is an extra compatible set
of GMRs related to U . To obtain the compatible set rs, we recast the problem
at hand as clique extraction on the GMRs’ interaction graph G, where it needs
to be the maximal best match based on the user-selected GMRs. A clique is a
set of fully connected vertices. Thus a compatible clique KC-Clique is extracted,
where K indicates the number of vertices in the clique, and C denotes that the
clique is compatible.

Definition 2. The KC-Clique is a compatible clique iff between all vertices only
the compatible relations exist.

Compatible relations between GMRs are encoded by edges in the GMRs
interaction graph G. Thus, KC-Clique includes compatible GMRs from U (called
UC) and additional compatible GMRs related to U ’s elements (called UEC).
KC-max-Clique is a clique containing at least K vertices that is not a subset
of any other cliques. To compute the KC-max-Clique, we use the CLIQUES
algorithm described in [28]. To avoid enumerating all possible subgraphs, two
constraints on the clique extraction are placed:

1. If a clique does not contain at least K vertices, then neither the clique nor
any other sub-cliques can contain a KC-Clique, because, if the clique does
not have the required number of vertices, it cannot be a KC-Clique.

2. Only vertices in a KC-max-Clique of G can form a KC-Clique, because a
vertex that is not in a KC-max-Clique cannot be in any KC-Clique.

The first constraint contributes to reducing the search space, and the second
one narrows the result to the maximal desired compatible GMRs. Moreover,
Definition 2 guarantees that the selected GMRs are compatible.

4 Ranking the Compatible Sets

For each set of user-selected GMRs, there are different possible compatible GMRs
sets. Let RS = {rs1, rs2, ..., rsl} be all possible compatible sets based on the



user-selected GMRs. To figure out which rsz ∈ RS is the best choice, the Ranker
component in Fig. 1 rates the elements of RS based on different criteria. The
ranked values assign a confidence degree to each suggested compatible set.

Assume that the user selected U = {R7, R9, R10, R16}. The approach
described before finds three possible compatible sets, RS = {rs1, rs2, rs3}1,
where rs1 = {R1, R3, R6, R8, R9, R10, R11, R16, R17, R18}, rs2 = {R1, R3,
R8, R9, R10, R11, R13, R14, R16, R17, R18}, and rs3 = {R2, R3, R5, R6, R7,
R8, R9, R10, R11, R15}. To determine which rs is the best choice, we rank all
compatible sets with three different criteria:

1. The number of user-selected GMRs in each compatible set: The
intersection of the compatible set rsz and the user-selected GMRs U , rsz∩U ,
comprises all elements which are contained in both rsz and U . Therefore, we
count the number of elements that are available in both rsz and U . Let us
consider that |rsz| is the number of GMRs in the compatible set rsz, |U| is
the number of GMRs in the user-selected GMRs (U), |U ∩rsz| is the number
of GMRs contained in both rsz and U , and |GMRs| the total number of
GMRs in our system. Given these notations, Eq. 2 ranks each suggested
compatible set based on considering the user preference in the first part and
the power (important) of rsz itself in the second part.

Score1(rsz) =
|U ∩ rsz|
|U|

+
|rsz|
|GMRs|

(2)

In the given example, rs1 has |rs1| = 10 , |U| = 4, |U ∩ rs1| = 3 , and
|GMRs| = 20. Therefore, this score is obtained as Score1(rs1) = 3

4 + 10
20 =

1.25. Similarly, this score for rs2 and rs3 is calculated as Score1(rs2) = 1.3
and Score1(rs3) = 1.25.

2. The number of user-selected aspects in each compatible set: GMRs
have been categorized in different aspects, which users can select. So, not
only the number of user-selected GMRs has an effect on the ranking of
each compatible set rs, also the user-selected aspects should be taken into
account. Therefore, we calculate to which extent each suggested compatible
set rsz covers the user’s intended aspects. Let us Ψ(U) be the number of
GMRs’ aspects in U , Ψ(rsz) the number of GMRs’ aspects in rsz, Ψ(U ∩rsz)
the number of common aspects in both rsz and U , and |GMRsAspect| the
total number of aspects in the GMRs catalouge. Given these notations, Eq. 3
ranks each suggested compatible set based on considering the user preference
aspects in the first part and the power (important) of rsz’s aspect itself in
the second part of the equation.

Score2(rsz) =
Ψ(U ∩ rsz)

Ψ(U)
+

Ψ(rsz)

|GMRsAspect|
(3)

In the current example, rs1 has Ψ(U) = 3, Ψ(rs1) = 3, Ψ(U ∩ rs1) = 3, and
|GMRsAspect| = 6. Thus, this score is obtained as Score2(rs1) = 3

3+ 3
6 = 1.5.

1 For the given U , there are 18 different maximal compatible sets. To make the example
concise, we consider 3 compatible sets, only.



Fig. 2: Top-10 maximum compatible sets for U ={R7, R9, R10, R16}.

Similarly, this score for rs2 and rs3 is achieved as Score2(rs2) = 1.67 and
Score2(rs3) = 1.5.

3. Compatibility degree of each GMR: Up to now, the proposed metrics
consider the quantity measure. This results in obtaining an equal value for
those sets that contain the same number of GMRs and aspects. In the
running example, there is the same number of GMRs and aspects in rs1
and rs3, i.e., |s1| = 10, |s3| = 10, Ψ(s1) = 3, and Ψ(s3) = 3. Also, the
number of common GMRs and aspects in these sets with user-selected ones
is the same. Therefore, they obtained the same values for Score1 and Score2.
However, these two sets are distinct. To reflect the difference of suggested
sets, the distinctive characteristics of each GMR belonging to the sets should
be considered. As an indicator to represent a difference between GMRs, we
use the compatibility degree of each GMR (see Table 4). Thus, the average
value of the compatibility degree of each GMR in the suggested compatible
set is used as the third ranking criteria. For the given rsz = {Ri, ..., Rm},
the average compatibility degree of Rs in rsz is shown in Eq. 4.

Score3(rsz) = Σm
j=ifd(Rj)×

1

Σ(rsz)
(4)

In the example, Score3(rs1) = 0.845, Score3(rs2) = 0.86, and Score3(rs3) =
0.89.

Thus, the total rank for each rsz is defined by Eq. 5.

Total Score(rsz) = w1 × Score1 + w2 × Score2 + w3 × Score3 (5)

For our example, considering empirical values of 0.8, 0.1, and 0.1 for
w1, w2, and w3, respectively, the total score is achieved as Total Score(rs1) =
1.23, Total Score(rs2) = 1.29, and Total Score(rs3) = 1.24. The values are
normalized between 0 and 1 and presented in the descending order to the user.
Fig. 2 shows the top-10 compatible sets, where the values for each set has been
normalized and ordered in the GUI.



Legend: Class Instance Object property Datatype Property subClassOf Property Annotation Property Corresponding EntityProperty Restriction Literal

𝑝𝑝1: writtenBy

𝑝𝑝6: has_id

String

𝑐𝑐5:
Paper

𝑝𝑝2: readByReviewer

𝑝𝑝11: subClassOf

𝑝𝑝7: has_title

String

𝑐𝑐7:
Author

𝑝𝑝3: hasAuthor

𝑝𝑝8: has_email String

𝑝𝑝9 : subClassOf

𝑝𝑝12: subClassOf
𝑝𝑝10: subClassOf

Exact
Cardinality

1

someValuesFrom

𝑐𝑐8:
Conference

𝑝𝑝4: hasMember

𝑝𝑝5: hasCountry
𝑐𝑐9:

Country

𝐼𝐼2:
Greece

𝐼𝐼3:
Japan

𝐼𝐼4:
Australia𝐼𝐼1:

EKAW2020
𝓞𝓞𝟏𝟏

minCardinality

1

𝑝𝑝13: subClassOf

𝑐𝑐4:
Person

𝑐𝑐3:
ConferenceMember

𝑐𝑐2:
Reviewer

𝑐𝑐1:
Review

𝑐𝑐6:
Document

𝑐𝑐10:
Review

𝑝𝑝14: has_authors
𝑐𝑐11:

Reviewer

𝑝𝑝16: has_id

Integer
𝑐𝑐13:

Paper

𝑐𝑐12:
Person

𝑝𝑝23: subClassOf

minCardinality

1

𝓞𝓞𝟐𝟐

𝑝𝑝17: has_doi

String

allValuesFrom

𝑝𝑝22: subClassOf

𝑝𝑝21: subClassOf

𝑝𝑝20: subClassOf

𝑝𝑝19: subClassOf

𝑝𝑝15: has_an_abstract

𝑐𝑐14:
Abstract

𝑝𝑝24: subClassOf

𝑝𝑝25: subClassOf

𝑝𝑝26: rdfs:comment

𝑐𝑐15:
ExtendedAbstract

𝑐𝑐16:
RegularContribution

𝑐𝑐17:
WrittenContribution

𝑐𝑐18:
ConferenceContribution

𝑐𝑐19:
ConferenceDocument

𝑝𝑝18: subClassOf

Fig. 3: Two sample source ontologies.

𝑐𝑐1𝑐𝑐10:
Review

Integer

String

exactCardinality

minCardinality 1

1

𝑝𝑝1𝑝𝑝14: writtenBy

allValuesFrom

𝑝𝑝27: assignExternalReviewer

𝑐𝑐5𝑐𝑐13:
Paper

𝑝𝑝2: readByReviewer

𝑝𝑝7: has_title

String𝑝𝑝17: has_doi

String

𝑝𝑝15: has_an_abstract

𝑐𝑐14:
Abstract

𝑝𝑝3: hasAuthor
𝑐𝑐7:

Author

𝑝𝑝8: has_email

String minCardinality

1𝑝𝑝4: hasMember

𝑝𝑝5: hasCountry

𝑐𝑐9:
Country

𝐼𝐼4:
Japan

𝐼𝐼2:
Australia

𝑐𝑐4𝑐𝑐12:
Person

𝑝𝑝23: subClassOf

𝑝𝑝10: subClassOf
𝑝𝑝9: subClassOf

𝑝𝑝12: subClassOf

𝓞𝓞𝑴𝑴𝟏𝟏

𝑝𝑝26: rdfs:comment

𝑐𝑐20:
ExternalReviewer

𝑝𝑝6𝑝𝑝16: has_id

𝑐𝑐2𝑐𝑐11:
Reviewer

𝑐𝑐6𝑐𝑐19: 
Document

𝑐𝑐8:
Conference

𝐼𝐼1:
EKAW2020

String

𝑐𝑐1𝑐𝑐10:
Review

1

𝑝𝑝1𝑝𝑝14: writtenBy

allValuesFrom

𝑐𝑐5𝑐𝑐13:
Paper

𝑝𝑝2: readByReviewer

𝑝𝑝7: has_title

String

𝑝𝑝17: has_doi

String

𝑐𝑐14:
Abstract

𝑝𝑝3: hasAuthor
𝑐𝑐7:

Author

𝑝𝑝8: has_email

String
minCardinality

1

𝑝𝑝4: hasMember

𝐼𝐼1:
EKAW020

𝑝𝑝5: hasCountry

𝑐𝑐9:
Country

𝐼𝐼4:
Japan

𝐼𝐼2:
Australia

𝑐𝑐4𝑐𝑐12:
Person

𝑝𝑝11: subClassOf

𝑝𝑝10: subClassOf

𝑝𝑝9: subClassOf

𝑝𝑝22: subClassOf

𝑝𝑝21: subClassOf

𝑝𝑝20: subClassOf𝑝𝑝19: subClassOf

𝓞𝓞𝑴𝑴𝟐𝟐

𝑝𝑝12: subClassOf

𝑝𝑝13: subClassOf

𝐼𝐼3:
Greece

𝑝𝑝28: subClassOf

𝑝𝑝26: rdfs:comment

𝑐𝑐3:
ConferenceMember

𝑐𝑐16:
RegularContribution

𝑐𝑐18:
ConferenceContribution

𝑐𝑐17:
WrittenContribution

𝑝𝑝6𝑝𝑝16: has_id

𝑐𝑐8:
Conference

𝑐𝑐2𝑐𝑐11:
Reviewer

𝑐𝑐6𝑐𝑐19:
Document

minCardinality

Fig. 4: Different versions of merged ontologies of Fig. 3.

5 Empirical Analysis

We have implemented the GMRs within the CoMerger [18]2. In the ranking
process, w1, w2, and w3 have been empirically adjusted to 0.8, 0.1, and 0.1,
respectively. For two sample source ontologies (see Fig. 3), we have created
manually two different versions of the merged ontologies OM1

and OM2
(see

2 Detail of GMR implementation: http://comerger.uni-jena.de/requirement.jsp



Fig. 4) to reflect different GMRs3. To this end, we analyze three user-selected
GMRs and then discuss the extent to which they can be fulfilled simultaneously
on OM1 and OM2 .

First Use Case: U = {R2, R3, R8, R16}. In OM2
, R3 and R8 are

fulfilled. However, properties p15, p24, and p25 are missing, so R2 is not fulfilled.
Moreover, there is a cycle in c5c13 v c16 v c17 v c18 v c6c19 v c5c13, which
indicates that R16 also is not fulfilled in OM2

. R2 and R16 are incompatible.
Because R2 will add the missing properties and will want to keep all properties.
On the other side, R16 will delete the is-a properties to be free of cycles.
By applying R2 in OM2 , properties p15, p24, and p25 will be added. Thus, all
properties can be preserved at the merged ontology. However, by applying R16,
property p28 will be deleted in order to be free of cycles. This action causes
that R2 failed. In this case, if R2 wants to add p28, a cycle will be generated.
So, R2 could not completely be fulfilled in the merged ontology. Three missing
properties can be added, but one property (p28) could not be preserved.

Thus, our system suggests as the best possible compatible set rs1 = {R1,
R3, R8, R9, R10, R11, R13, R14, R16, R17, R18} and rs2 = {R3, R8, R9, R10,
R11, R13, R14, R15, R16, R17, R18}, in which the R2 is not considered. These
two sets have the same scores 1.0 based on our proposed method. Thus, given
the user-selected GMRs, there is a superset of compatible GMRs that can be
fulfilled simultaneously. The next possible compatible set is when R16 is not
considered and R2 will be kept. Thus, the system suggests the set rs3 = {R2,
R3, R5, R7, R8, R10, R12, R13, R14, R19, R20} with score 0.986. For the given
U , the 3C-Cliques are {R3, R8, R16}, {R2, R8, R16}, and {R2, R3, R8}, and a
2C-Clique is {R3, R8}. In Table 5, all KC-max-Cliques are shown, which are all
possible maximal compatible sets for the user-selected GMRs. rs1-rs6, rs8, and
rs9 are 11C-max-Cliques, while rs7, rs10-rs16 are 10C-max-Cliques, and rs17
and rs18 are 8C-max-Clique and 7C-max-Clique, respectively.

Second Use Case: U = {R3, R6, R13}. In OM1
, R3 is fulfilled. R13

applies one type restriction. So, only one type for property p6p16:has id should
be preserved. But, applying R13 will cause that R6 will not be fulfilled, because
not all values of property p6p16 are preserved. Thus, R6 and R13 have a
conflict with each other and cannot be fulfilled simultaneously in OM1 . Given
the user-selected GMRs, there are two 2C-Cliques as {R3, R13} and {R3, R6}.
Our method suggests as KC-max-clique rs1 = {R2, R3, R5, R7, R8, R10, R12,
R13, R14, R19, R20} in which R6 is not include. The next two maximum
compatible sets are rs2 = {R2, R3, R5, R7, R8, R9, R10, R12, R13, R14}, rs3 =
{R1, R2, R3, R5, R7, R8, R10, R13, R14, R19, R20}, respectively.

Third Use Case: U = {R1, R2, R3, R8, R10, R19}. In OM1
, classes c3,

c13-c15 are missing. By applying R1, these classes will be added to the OM1
.

Moreover, properties p11, p13, p18-p22, p24, and p25 are missing. Thus, applying
R2 will cause that these properties will be added to the OM1 . R3 will add the
missing instance I2 to the OM1

. R8, R10, and R19 are fulfilled in OM1
. In OM2

,
class c15 and properties p15, p24, and p25 are missing. Applying R1 and R2 will

3 Ontologies available at: https://github.com/fusion-jena/CoMerger/GMR



Table 5: All possible maximum compatible sets for user-selected GMRs
U = {R2, R3, R8, R16}. Green (no-line): user-selected compatible GMRs; Red
(double-underline): user-selected incompatible GMRs; Orange(underline): extra
compatible GMRs.
RS K Compatible Incompatible Score

rs1 11 {R1 , R3 , R8 , R9 , R10 , R11 , R13 , R14 , R16 , R17 , R18} {R2} 1.0

rs2 11 {R3 , R8 , R9 , R10 , R11 , R13 , R14 , R15 , R16 , R17 , R18} {R2} 1.0

rs3 11 {R2 , R3 , R5 , R7 , R8 , R10 , R12 , R13 , R14 , R19 , R20} {R16} 0.986

rs4 11 {R2 , R3 , R5 , R7 , R8 , R9 , R10 , R11 , R12 , R13 , R14} {R16} 0.975

rs5 11 {R1 , R2 , R3 , R5 , R7 , R8 , R10 , R13 , R14 , R19 , R20} {R16} 0.973

rs6 11 {R2 , R3 , R5 , R7 , R8 , R10 , R13 , R14 , R15 , R19 , R20} {R16} 0.973

rs7 10 {R3 , R6 , R8 , R9 , R10 , R11 , R15 , R16 , R17 , R18} {R2} 0.97

rs8 11 {R1 , R2 , R3 , R5 , R7 , R8 , R9 , R10 , R11 , R13 , R14} {R16} 0.963

rs9 11 {R2 , R3 , R5 , R7 , R8 , R9 , R10 , R11 , R13 , R14 , R15} {R16} 0.963

rs10 10 {R1 , R3 , R6 , R8 , R9 , R10 , R11 , R16 , R17 , R18} {R2} 0.957

rs11 10 {R2 , R3 , R5 , R6 , R7 , R8 , R10 , R15 , R19 , R20} {R16} 0.944

rs12 10 {R2 , R3 , R5 , R6 , R7 , R8 , R10 , R12 , R19 , R20} {R16} 0.943

rs13 10 {R2 , R3 , R5 , R6 , R7 , R8 , R9 , R10 , R11 , R15} {R16} 0.934

rs14 10 {R2 , R3 , R5 , R6 , R7 , R8 , R9 , R10 , R11 , R12} {R16} 0.933

rs15 10 {R1 , R2 , R3 , R5 , R6 , R7 , R8 , R10 , R19 , R20} {R16} 0.931

rs16 10 {R1 , R2 , R3 , R5 , R6 , R7 , R8 , R9 , R10 , R11} {R16} 0.921

rs17 8 {R3 , R4 , R8 , R9 , R10 , R11 , R13 , R14} {R2 , R16} 0.719

rs18 7 {R3 , R4 , R6 , R8 , R9 , R10 , R11} {R2 , R16} 0.676

add the missing classes and properties in OM2
. R3, R8, and R10 are fulfilled in

OM2
. However, in the origin OM2

, the class c14 was unconnected. But, applying
R1 and R2 caused that now c14 be connected. Thus, R19 is fulfilled. In this
case study, the user-selected GMRs are compatible with each other, however,
a superset of other compatible GMRs with U is suggested. The maximum
compatible sets are rs1 = {R1, R2, R3, R5, R7, R8, R10, R13, R14, R19, R20}
and rs2 = {R1, R2, R3, R5, R6, R7, R8, R10, R19, R20}.

6 Conclusion

Various ontology merging systems have been proposed. Each covers a group of
Generic Merge Requirements (GMRs). Since not all GMRs can be fulfilled at the
same time, we proposed a graph-based framework to systematically determine
the GMRs compatibility interaction. The framework allows users to specify the
most important GMRs for their specific task at hand and detects a maximal
compatible superset. This result can then be used to select a proper merge
method or to parameterize a generic merge method. The intuition behind using
the graph theory is to facilitate the encoding of the GMRs’ compatibility via
the graph presentation and reveal the other possible compatible requirements.
GMRs embedded in the proposed framework can be easily extended, in which
building the GMR interaction’s graph and obtaining their compatibility can be



performed in the same procedure for the new adapted GMRs. We have analyzed
the GMRs within the CoMerger system, where the users can access to the
logged information of applying GMRs on their merged ontologies. Through the
proposed framework, potential conflicts between GMRs can be found. Not all
of these potential conflicts will actually materialize in each concrete merged
ontology. In future work, we will investigate how the approach can be extended
to take this into account. Our second future plan is a user study about the extent
to which the users agree with the ranked suggested sets.
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5. D. Thau, S. Bowers, and B. Ludäscher, “Merging taxonomies under rcc-5 algebraic
articulations,” in ONISW, pp. 47–54, ACM, 2008.

6. S. P. Ju, H. E. Esquivel, A. M. Rebollar, M. C. Su, et al., “CreaDO–a methodology
to create domain ontologies using parameter-based ontology merging techniques,”
in MICAI, pp. 23–28, IEEE, 2011.

7. M. Mahfoudh, L. Thiry, G. Forestier, and M. Hassenforder, “Algebraic graph
transformations for merging ontologies,” in MEDI, pp. 154–168, Springer, 2014.

8. N. F. Noy and M. A. Musen, “The prompt suite: interactive tools for ontology
merging and mapping,” INT J HUM-COMPUT ST, pp. 983–1024, 2003.

9. A. Makwana and A. Ganatra, “A known in advance, what ontologies to integrate?
for effective ontology merging using k-means clustering,” IJIES, Vol.11, No.4, 2018.

10. K. Saleem, Z. Bellahsene, and E. Hunt, “Porsche: Performance oriented schema
mediation,” Information Systems, vol. 33, no. 7, pp. 637–657, 2008.

11. A. Radwan, L. Popa, I. R. Stanoi, and A. Younis, “Top-k generation of integrated
schemas based on directed and weighted correspondences,” in SIGMOD, 2009.

12. N. M. El-Gohary and T. E. El-Diraby, “Merging architectural, engineering, and
construction ontologies,” J COMPUT CIVIL ENG, pp. 109–128, 2009.

13. G. Stumme and A. Maedche, “FCA-Merge: Bottom-up merging of ontologies,” in
IJCAI, pp. 225–230, 2001.

14. M. Priya and C. A. Kumar, “An approach to merge domain ontologies using
granular computing,” Granular Computing, pp. 1–26, 2019.



15. M. Priya and A. K. Cherukuri, “A novel method for merging academic social
network ontologies using formal concept analysis and hybrid semantic similarity
measure,” Library Hi Tech, 2019.

16. A. Guzmán-Arenas and A.-D. Cuevas, “Knowledge accumulation through
automatic merging of ontologies,” EXPERT SYST APPL, pp. 1991–2005, 2010.

17. S. Babalou and B. König-Ries, “GMRs: Reconciliation of generic merge
requirements in ontology integration,” In SEMANTICS Poster and Demo., 2019.

18. S. Babalou, E. Grygorova, and B. König-Ries, “CoMerger: A customizable online
tool for building a consistent quality-assured merged ontology,” in In ESWC,
Poster and Demo Track, June, 2020.

19. L.-Y. Zhang, J.-D. Ren, and X.-W. Li, “OIM-SM: A method for ontology
integration based on semantic mapping,” J INTELL FUZZY SYST, 2017.

20. M. Fahad, N. Moalla, and A. Bouras, “Detection and resolution of semantic
inconsistency and redundancy in an automatic ontology merging system,” JIIS,
vol. 39, no. 2, pp. 535–557, 2012.

21. M. Mahfoudh, G. Forestier, and M. Hassenforder, “A benchmark for ontologies
merging assessment,” in KSEM, pp. 555–566, 2016.

22. S. Raunich and E. Rahm, “Towards a benchmark for ontology merging.,” in OTM,
vol. 7567, pp. 124–133, 2012.

23. F. Duchateau and Z. Bellahsene, “Measuring the quality of an integrated schema.,”
in ER, pp. 261–273, 2010.

24. N. F. Noy, D. L. McGuinness, et al., “Ontology development 101: A guide to
creating your first ontology,” 2001.

25. M. Poveda-Villalón, M. C. Suárez-Figueroa, and A. Gómez-Pérez, “Validating
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